An Application of the Canonical Bundle Formula
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 210-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a part of Shokurov's conjecture on the characterization of toric varieties modulo the minimal model program and the adjunction conjecture.
@article{TRSPY_2003_241_a11,
     author = {Yu. G. Prokhorov},
     title = {An {Application} of the {Canonical} {Bundle} {Formula}},
     journal = {Informatics and Automation},
     pages = {210--217},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a11/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - An Application of the Canonical Bundle Formula
JO  - Informatics and Automation
PY  - 2003
SP  - 210
EP  - 217
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a11/
LA  - ru
ID  - TRSPY_2003_241_a11
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T An Application of the Canonical Bundle Formula
%J Informatics and Automation
%D 2003
%P 210-217
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a11/
%G ru
%F TRSPY_2003_241_a11
Yu. G. Prokhorov. An Application of the Canonical Bundle Formula. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 210-217. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a11/

[1] Ambro F., The adjunction conjecture and its applications, PhD thesis, Johns Hopkins Univ., 1999; arXiv: math.AG/9903060

[2] Ambro F., Shokurov's boundary property, arXiv: math.AG/0210271

[3] Fujino O., “Applications of Kawamata's positivity theorem”, Proc. Japan. Acad. A., 75:6 (1999), 75–79 | DOI | MR | Zbl

[4] Iskovskikh V. A., Prokhorov Yu G., Fano varieties, Encycl. Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl

[5] Kawamata Y., “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. Math. Ser. 2, 127:1 (1988), 93–163 | DOI | MR | Zbl

[6] Kawamata Y., “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | MR | Zbl

[7] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[8] J. Kollár (ed.), “Flips and abundance for algebraic threefolds”, A Summer Seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR

[9] McKernan J., “A simple characterization of toric varieties”, Proc. Algebraic Geom. Symp. Kinosaki, 2001, 59–72

[10] Prokhorov Yu. G., Lectures on complements on log surfaces, MSJ Memoirs, 10, Math. Soc. Japan, Tokyo, 2001 | MR

[11] Prokhorov Yu. G., “On a conjecture of Shokurov: Characterization of toric varieties”, Tohoku Math. J. Ser. 2, 53:4 (2001), 581–592 | DOI | MR | Zbl

[12] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR | Zbl