The Cone of Hilbert Nullforms
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 192-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

A geometric–combinatorial algorithm is given that allows one, using solely the system of weights and roots, to determine the Hesselink strata of the nullcone of a linear representation of a reductive algebraic group and compute their dimensions. In particular, it provides a constructive approach to computing the dimension of the nullcone and determining all its irreducible components of maximal dimension. In the case of the adjoint representation (and, more generally, $\theta$-representation), the algorithm turns into the algorithm of classifying conjugacy classes of nilpotent elements in a semisimple Lie algebra (respectively, homogeneous nilpotent elements in a cyclically graded semisimple Lie algebra).
@article{TRSPY_2003_241_a10,
     author = {V. L. Popov},
     title = {The {Cone} of {Hilbert} {Nullforms}},
     journal = {Informatics and Automation},
     pages = {192--209},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a10/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - The Cone of Hilbert Nullforms
JO  - Informatics and Automation
PY  - 2003
SP  - 192
EP  - 209
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a10/
LA  - ru
ID  - TRSPY_2003_241_a10
ER  - 
%0 Journal Article
%A V. L. Popov
%T The Cone of Hilbert Nullforms
%J Informatics and Automation
%D 2003
%P 192-209
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a10/
%G ru
%F TRSPY_2003_241_a10
V. L. Popov. The Cone of Hilbert Nullforms. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 192-209. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a10/

[1] Adamovich O. M., “Ravnorazmernye predstavleniya prostykh algebraicheskikh grupp”, Geometricheskie metody v zadachakh algebry i analiza, Yarosl. gos. un-t, Yaroslavl, 1980, 120–125 | MR

[2] Antonyan L. V., “Klassifikatsiya chetyre-vektorov vosmimernogo prostranstva”, Tr. seminara po vekt. i tenz. analizu, 20, MGU, M., 1981, 144–161 | MR

[3] Antonyan L. V., Elashvili A. G., “Klassifikatsiya spinorov razmernosti shestnadtsat”, Tr. Tbil. mat. in-ta, 70, 1982, 4–23 | MR

[4] Bogomolov F. A., “Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 42:6 (1978), 1227–1287 | MR | Zbl

[5] Vinberg E. B., “O lineinykh gruppakh, svyazannykh s periodicheskimi avtomorfizmami poluprostykh algebraicheskikh grupp”, DAN SSSR, 221:4 (1975), 767–770 | MR | Zbl

[6] Vinberg E. B., “O klassifikatsii nilpotentnykh elementov graduirovannykh algebr Li”, DAN SSSR, 225:4 (1975), 745–748 | MR | Zbl

[7] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. mat., 40:3 (1976), 488–526 | MR | Zbl

[8] Vinberg E. B., “Klassifikatsiya odnorodnykh nilpotentnykh elementov poluprostoi graduirovannoi algebry Li”, Tr. seminara po vekt. i tenz. analizu, 19, MGU, M., 1979, 155–177 | MR

[9] Vinberg E. B., Popov V. L., Teoriya invariantov, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fund. napravleniya, 55, VINITI, M., 1989 | MR

[10] Vinberg E. B., Elashvili A. G., “Klassifikatsiya tri-vektorov devyatimernogo prostranstva”, Tr. seminara po vekt. i tenz. analizu, 18, MGU, M., 1978, 197–233 | MR

[11] Kats V. G., “K voprosu ob opisanii prostranstva orbit lineinykh algebraicheskikh grupp”, UMN, 30:6 (1975), 173–174 | MR | Zbl

[12] Popov V. L., “Predstavleniya so svobodnym modulem kovariantov”, Funkts. analiz i ego pril., 10:3 (1976), 91–92 | MR | Zbl

[13] Popov V. L., “Klassifikatsiya spinorov razmernosti chetyrnadtsat”, Tr. Mosk. mat. o-va, 37, 1978, 173–217 | MR | Zbl

[14] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Mat. sb., 30:2 (1952), 349–462 | MR | Zbl

[15] Bala P., Carter R. W., “Classes of unipotent elements in simple algebraic groups, I, II”, Math. Proc. Cambridge Phil. Soc., 79 (1976), 401–425 ; 80, 1–18 | DOI | MR | Zbl | DOI | MR

[16] Franz M., “convex”, A Maple package for convex geometry, version 0.91

[17] Dadok J., Kac V., “Polar representations”, J. Algebra, 92:2 (1985), 504–524 | DOI | MR | Zbl

[18] Gatti V., Viniberghi E., “Spinors of 13-dimensional space”, Adv. Math., 30 (1978), 137–155 | DOI | MR | Zbl

[H1] Hesselink W. H., “Uniform instability in reductive groups”, J. Reine und Angew. Math., 303/304 (1978), 74–96 | MR | Zbl

[20] Hesselink W. H., “Desingularizations of varieties of nullforms”, Invent. Math., 55 (1979), 141–163 | DOI | MR | Zbl

[21] Hilbert D., “Über die vollen Invariantensysteme”, Math. Ann., 42 (1893), 313–373 | DOI | MR

[22] Humphreys J. E., Introduction to Lie algebras and representation theory, Grad. Texts Math., 9, Springer, Berlin, Heidelberg, New York, 1972 | MR | Zbl

[23] Kac V., “Some remarks on nilpotent orbits”, J. Algebra, 64 (1980), 190–213 | DOI | MR | Zbl

[24] Kempf G. R., “Instability in invariant theory”, Ann. Math. Ser. 2, 108 (1978), 299–316 | DOI | MR | Zbl

[25] Kirwan F. C., Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, Princeton Univ. Press, Princeton, 1984 | MR

[26] Le Bruyn L., “Nilpotent representations”, J. Algebra, 197:1 (1997), 153–177 | DOI | MR | Zbl

[27] Littelmann P., “Koreguläre und äquidimensionale Darstellungen”, J. Algebra, 123:1 (1989), 193–222 | DOI | MR | Zbl

[28] Littelmann P., “An effective method to classify nilpotent orbits”, Algorithms in algebraic geometry and applications, Progr. Math., 143, Birkhäuser, Basel, 1996, 255–269 | MR | Zbl

[29] Mumford D., Geometric invariant theory, Ergebn. Math., 34, Springer, Berlin, 1965 | MR | Zbl

[30] Ness L., “A stratification of the null-cone via the moment map”, Amer. J. Math., 106 (1984), 1281–1329 | DOI | MR | Zbl

[31] Popov V. L., “Sections in invariant theory”, Proc. Sophus Lie Memorial Conf. (Oslo, 1992), Scand. Univ. Press, Oslo, 1994, 315–362 | MR

[32] Rousseau G., “Immeubles sphériques et theorie des invariants”, C. R. Acad. Sci. Paris A., 286 (1978), 247–250 | MR | Zbl

[33] Schwarz G. W., “Representations of simple Lie groups with a free module of covariants”, Invent. Math., 50 (1978), 1–12 | DOI | MR | Zbl

[34] Schwarz G. W., “Lifting smooth homotopies of orbit spaces”, Publ. Math. IHES, 1980, no. 51, 37–135 | MR | Zbl

[35] Slodowy P., “Die Theorie der optimalen Einparameteruntergruppen für instabile Vektoren”, Algebraic transformation groups and invariant theory, DMV Seminar, 13, eds. H. Kraft, P. Slodowy, T. A. Springer, Birkhäuser, Basel, 1989, 115–130 | MR