An Analogue of the Grothendieck Conjecture for Two-Dimensional Local Fields of Finite Characteristic
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 8-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of a local field $K$ of finite characteristic $p>0$, a local analogue of the Grothendieck conjecture appears as a characterization of “analytic” automorphisms of the Galois group $\Gamma _K$ of $K$, i.e. the automorphisms of the topological group $\Gamma _K$ induced by conjugation by the automorphisms of the algebraic closure $\overline K$ of $K$ that leave the field $K$ invariant. Earlier, it was proved by the author that necessary and sufficient conditions for such a characterization in the case of one-dimensional local fields $K$ of characteristic $p\geq 3$ are the compatibility of these fields with the ramification filtration of the Galois group $\Gamma _K$. In the present paper, it is shown that, in the case of multidimensional local fields, the compatibility with the ramification filtration supplemented with certain natural topological conditions is still sufficient for the characterization of analytic automorphisms of $\Gamma _K$.
@article{TRSPY_2003_241_a0,
     author = {V. A. Abrashkin},
     title = {An {Analogue} of the {Grothendieck} {Conjecture} for {Two-Dimensional} {Local} {Fields} of {Finite} {Characteristic}},
     journal = {Informatics and Automation},
     pages = {8--42},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - An Analogue of the Grothendieck Conjecture for Two-Dimensional Local Fields of Finite Characteristic
JO  - Informatics and Automation
PY  - 2003
SP  - 8
EP  - 42
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/
LA  - ru
ID  - TRSPY_2003_241_a0
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T An Analogue of the Grothendieck Conjecture for Two-Dimensional Local Fields of Finite Characteristic
%J Informatics and Automation
%D 2003
%P 8-42
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/
%G ru
%F TRSPY_2003_241_a0
V. A. Abrashkin. An Analogue of the Grothendieck Conjecture for Two-Dimensional Local Fields of Finite Characteristic. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 8-42. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/

[1] Abrashkin V. A., “On a local analogue of the Grothendieck conjecture”, Intern. J. Math., 11:2 (2000), 133–175 | DOI | MR | Zbl

[2] Abrashkin V. A., Towards explicit description of ramification filtration in the 2-dimensional case, Preprint Nottingham Univ. No 00-01, 2000 ; “Ramification theory of arithmetic schemes”, Proc. Conf., (Luminy, 1999) (to appear) http://www.maths.dur.ac.uk/pure/ps/va-drf.ps | MR | Zbl

[3] Abrashkin V. A., “Ramification theory for higher dimensional local fields”, Contemp. Math., 300 (2002), 1–16 | MR | Zbl

[4] Abrashkin V. A., Characteristic 0 case of the Grothendieck conjecture for higher dimensional local fields, Preprint Durham Univ., 2003-03 | MR

[5] Jacobson N., Basic algebra, V. 2, W. H. Freeman and Co., San Francisco, 1980 | MR | Zbl

[6] Zhukov I., On ramification theory in the imperfect residue field case, , 2002 ; “Ramification theory of arithmetic schemes”, Proc. Conf. (Luminy, 1999) (to appear) http:// arxiv.org/abs/math.NT/0201238 | MR