Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_241_a0, author = {V. A. Abrashkin}, title = {An {Analogue} of the {Grothendieck} {Conjecture} for {Two-Dimensional} {Local} {Fields} of {Finite} {Characteristic}}, journal = {Informatics and Automation}, pages = {8--42}, publisher = {mathdoc}, volume = {241}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/} }
TY - JOUR AU - V. A. Abrashkin TI - An Analogue of the Grothendieck Conjecture for Two-Dimensional Local Fields of Finite Characteristic JO - Informatics and Automation PY - 2003 SP - 8 EP - 42 VL - 241 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/ LA - ru ID - TRSPY_2003_241_a0 ER -
V. A. Abrashkin. An Analogue of the Grothendieck Conjecture for Two-Dimensional Local Fields of Finite Characteristic. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 8-42. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a0/
[1] Abrashkin V. A., “On a local analogue of the Grothendieck conjecture”, Intern. J. Math., 11:2 (2000), 133–175 | DOI | MR | Zbl
[2] Abrashkin V. A., Towards explicit description of ramification filtration in the 2-dimensional case, Preprint Nottingham Univ. No 00-01, 2000 ; “Ramification theory of arithmetic schemes”, Proc. Conf., (Luminy, 1999) (to appear) http://www.maths.dur.ac.uk/pure/ps/va-drf.ps | MR | Zbl
[3] Abrashkin V. A., “Ramification theory for higher dimensional local fields”, Contemp. Math., 300 (2002), 1–16 | MR | Zbl
[4] Abrashkin V. A., Characteristic 0 case of the Grothendieck conjecture for higher dimensional local fields, Preprint Durham Univ., 2003-03 | MR
[5] Jacobson N., Basic algebra, V. 2, W. H. Freeman and Co., San Francisco, 1980 | MR | Zbl
[6] Zhukov I., On ramification theory in the imperfect residue field case, , 2002 ; “Ramification theory of arithmetic schemes”, Proc. Conf. (Luminy, 1999) (to appear) http:// arxiv.org/abs/math.NT/0201238 | MR