Quasi-Log Varieties
Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 220-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the Cone and Contraction Theorems of the Log Minimal Model Program to log varieties with arbitrary singularities.
@article{TRSPY_2003_240_a6,
     author = {F. Ambro},
     title = {Quasi-Log {Varieties}},
     journal = {Informatics and Automation},
     pages = {220--239},
     publisher = {mathdoc},
     volume = {240},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a6/}
}
TY  - JOUR
AU  - F. Ambro
TI  - Quasi-Log Varieties
JO  - Informatics and Automation
PY  - 2003
SP  - 220
EP  - 239
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a6/
LA  - en
ID  - TRSPY_2003_240_a6
ER  - 
%0 Journal Article
%A F. Ambro
%T Quasi-Log Varieties
%J Informatics and Automation
%D 2003
%P 220-239
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a6/
%G en
%F TRSPY_2003_240_a6
F. Ambro. Quasi-Log Varieties. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 220-239. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a6/

[1] Ambro F., The adjunction conjecture and its applications, http://arxiv.org/abs/ math.AG/9903060 | MR

[2] Ambro F., The locus of log canonical singularities, http://arxiv.org/abs/ math.AG/9806067

[3] Deligne P., “Théorie de Hodge, III”, Publ. Math. IHES, 1974, no. 44, 5–77 | MR | Zbl

[4] Esnault H., Viehweg E., Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, Basel, 1992 | MR | Zbl

[5] Fukuda S., “A base point free theorem of Reid type”, J. Math. Sci. Univ. Tokyo, 4:3 (1997), 621–625 | MR | Zbl

[6] Fujino O., “Base point free theorem of Reid–Fukuda type”, J. Math. Sci. Univ. Tokyo, 7:1 (2000), 1–5 | MR | Zbl

[7] Kawamata Y., “Pluricanonical systems on minimal algebraic varieties”, Invent. Math., 79:3 (1985), 567–588 | DOI | MR | Zbl

[8] Kawamata Y., “On Fujita's freeness conjecture for $3$-folds and $4$-folds”, Math. Ann., 308:3 (1997), 491–505 | DOI | MR | Zbl

[9] Kawamata Y., “Subadjunction of log canonical divisors, II”, Amer. J. Math., 120:5 (1998), 893–899 | DOI | MR | Zbl

[10] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[11] Kollár J., “Higher direct images of dualizing sheaves, I”, Ann. Math. Ser. 2, 123:1 (1986), 11–42 | DOI | MR | Zbl

[12] Kollár J., “Cone theorems and cyclic covers”, Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, 101–110 | MR

[13] Kollár J., Mori S., Birational geometry of algebraic varieties, Cambridge Tracts Math., 134, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[14] Prokhorov Yu. G., Shokurov V. V., The second main theorem on complements: from local to global, Preprint, Baltimore, Moscow, 2002

[15] Reid M., “Canonical threefolds”, Géométrie algébrique (Angers, 1979), ed. A. Beauville, Sijthhoff and Noordhoff, Alphen, 1980, 273–310 | MR

[16] Sakai F., “The structure of normal surfaces”, Duke Math. J., 52:3 (1985), 627–648 | DOI | MR | Zbl

[17] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR