Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_240_a5, author = {V. V. Shokurov}, title = {Prelimiting {Flips}}, journal = {Informatics and Automation}, pages = {82--219}, publisher = {mathdoc}, volume = {240}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a5/} }
V. V. Shokurov. Prelimiting Flips. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 82-219. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a5/
[1] Alexeev V., “Boundedness and $K^2$ for log surfaces”, Intern. J. Math., 5:6 (1994), 779–810 | DOI | MR | Zbl
[2] F. Ambro, “Quasi-log varieties”, Biratsionalnaya geometriya: lineinye sistemy i konechno porozhdennye algebry, Sbornik statei, Tr. MIAN, 240, 2003, 220–239 ; http://arxiv.org/abs/math.AG/0112282 | MR | Zbl
[3] Ambro F., Boundary property, Preprint, Cambridge Univ., Aug. 2002
[4] Batyrev V. V., “The cone of effective divisors of threefolds”, Proc. Intern. Conf. on Algebra, V. 3 (Novosibirsk, 1989), Contemp. Math., 131, 1992, 337–352 | MR | Zbl
[5] Borisov A. A., Borisov L. A., “Osobye toricheskie mnogoobraziya Fano”, Mat. sb., 183:2 (1992), 134–141 | MR | Zbl
[6] Borisov A. A., Shokurov V. V., “Napravlennye ratsionalnye priblizheniya s nekotorymi prilozheniyami v algebraicheskoi geometrii”, Trudy MIAN, 73–81 | MR | Zbl
[7] Cassels J. W. S., An introduction to Diophantine approximation, Cambridge Univ. Press, Cambridge, 1957 ; Reprint Hafner Publ. Co., New York, 1972 | MR | Zbl
[8] Corti A., Semistable 3-fold flips, http://www.dpmms.cam.ac.uk/~corti/ssflips.ps.gz
[9] Dolgachev I., Hu Yi., “Variation of geometric invariant theory quotients”, Publ. Math. IHES, 1998, no. 87, 5–56 | MR | Zbl
[10] Danilov V. I., Shokurov V. V., Algebraic curves, algebraic manifolds and schemes, Encycl. Math. Sci., 23, Springer, Berlin, 1998 | MR
[11] Francia P., “Some remarks on minimal models, I”, Compos. Math., 40, 1980, 301–313 | MR | Zbl
[12] Fujino O., Mori S., A canonical bundle formula, Preprint RIMS, No 1293, Aug. 2000, Kyoto ; ; J. Diff. Geom., 56:1 (2000), 167–188 http://www.kurims.kyoto-u.ac.jp/home_page/preprint/PS/RIMS1293.ps.gz | MR | Zbl
[13] Hu Yi, Keel S., “Mori dream spaces and GIT”, Michigan Math. J., 48 (2000), 331–348 | DOI | MR | Zbl
[14] Iskovskikh V. A., “b-Divizory i funktsionalnye algebry po Shokurovu”, Trudy MIAN, 8–20 | MR | Zbl
[15] Iskovskikh V. A., “O rabote Shokurova “Prelimiting flips””, Trudy MIAN, 21–42 | MR | Zbl
[16] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Encycl. Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl
[17] Kachi Y., “Flips of semi-stable 4-folds whose degenerate fibers are unions of Cartier divisors which are terminal factorial 3-folds”, Math. Ann., 307 (1997), 647–662 | DOI | MR | Zbl
[18] Kachi Y., “Flips from 4-folds with isolated complete intersection singularities”, Amer. J. Math., 120 (1998), 43–102 | DOI | MR | Zbl
[19] Kawamata Y., “The cone of curves of algebraic varieties”, Ann. Math., 119 (1984), 603–633 | DOI | MR | Zbl
[20] Kawamata Y., “On the cone of divisors of Calabi–Yau fiber spaces”, Intern. J. Math., 8 (1997), 665–687 | DOI | MR | Zbl
[21] Kawamata Y., “Semistable minimal models of threefolds in positive or mixed characteristic”, J. Alg. Geom., 3 (1994), 463–491 | MR | Zbl
[22] Kawamata Y., “On Fujita's freeness conjecture for 3-folds and 4-folds”, Math. Ann., 308 (1997), 491–505 | DOI | MR | Zbl
[23] Kawamata Y., “Subadjunction of log canonical divisors for a subvariety of codimension $2$, I”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | MR | Zbl
[24] Kawamata Y., “Subadjunction of log canonical divisors, II”, Amer. J. Math., 120:5 (1998), 893–899 | DOI | MR | Zbl
[25] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR
[26] Keel S., Matsuki K., McKernan J., “Log abundance theorem for threefolds”, Duke Math. J., 75 (1994), 99–119 | DOI | MR | Zbl
[27] J. Kollár (ed.), “Flips and abundance for algebraic threefolds”, A Summer Seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[Ko] Kollár J., “Subadditivity of the Kodaira dimension: fibers of general type”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 361–398 | MR
[29] Kollár J., Mori S., Birational geometry of algebraic varieties, Cambridge Tracts Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | MR | Zbl
[30] Kulikov Vik. S., “Vyrozhdenie K3 poverkhnostei i poverkhnostei Enrikvesa”, Izv. AN SSSR. Ser. mat., 41 (1977), 1008–1042 | MR | Zbl
[31] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. Math., 116 (1982), 133–176 | DOI | MR | Zbl
[32] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1 (1988), 117–253 | DOI | MR | Zbl
[33] Nakayama N., Remarks on $\mathbb{Q}$-factorial singularity, Preprint Univ. Tokyo, 1986
[34] Prokhorov Yu. G., “K probleme razlozheniya Zariskogo”, Trudy MIAN, 43–72 | MR | Zbl
[35] Prokhorov Yu. G., Shokurov V. V., “Pervaya osnovnaya teorema o dopolneniyakh: ot globalnogo k lokalnomu”, Izv. RAN. Ser. mat., 65:6 (2001), 99–128 | MR | Zbl
[36] Prokhorov Yu. G., Shokurov V. V., The second main theorem on complements: from local to global, Preprint, Baltimore, Moscow, 2002
[37] Reid M., “Canonical 3-folds”, Géométrie algébrique (Angers, 1979), ed. A. Beauville, Sijthhoff and Noordhoff, Alphen, 1980, 273–310 | MR
[38] Reid M., “Chapters on algebraic surfaces”, Complex algebraic geometry, Lectures of a summer program (Park City, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 5–159 | MR | Zbl
[39] Reid M., “Decomposition of toric morphisms”, Arithmetic and geometry, V. 2, Progr. Math., 36, eds. M. Artin, J. Tate, Birkhäuser, Boston etc., 1983, 395–418 | MR
[40] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR
[41] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–203 | MR | Zbl
[42] Shokurov V. V., “Semi-stable 3-fold flips”, Izv. RAN. Ser. mat., 57:2 (1993), 165–222 | MR | Zbl
[43] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR | Zbl
[44] Shokurov V. V., “Anticanonical boundedness for curves”, Appendix to: Nikulin V. V., “Hyperbolic reflection group methods and algebraic varieties”, Higher dimensional complex varieties (Trento, June, 1994), eds. M. Andreatta, T. Peternell, de Gruyter, Berlin, New York, 1996, 321–328 | MR | Zbl
[45] Shokurov V. V., “$3$-fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699 | DOI | MR | Zbl
[46] Shokurov V. V., “O ratsionalnoi svyaznosti”, Mat. zametki, 68:5 (2000), 771–782 | MR | Zbl
[47] Shokurov V. V., “Letters of a bi-rationalist. IV: Geometry of log flips”, Algebraic geometry, eds. M. C. Beltrametti et al., de Gruyter, Berlin, New York, 2002, 313–328 | MR | Zbl
[48] Takagi H., 3-fold log flips according to V. V. Shokurov, Preprint, 1999
[49] Thaddeus M., “Geometric invariant theory and flips”, J. Amer. Math. Soc., 9:3 (1996), 691–723 | DOI | MR | Zbl