Prelimiting Flips
Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 82-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses an inductive approach to constructing log flips. In addition to special termination and thresholds, we introduce two new ingredients: the saturation of linear systems, and families of divisors with confined singularities. We state conjectures concerning these notions in any dimension and prove them in general in dimension $\le 2$. This allows us to construct prelimiting flips (pl flips) and all log flips in dimension 4 and to prove the stabilization of an asymptotically saturated system of birationally free (b-free) divisors under certain conditions in dimension 3. In dimension 3, this stabilization upgrades pl flips to directed quasiflips. It also gives for the first time a proof of the existence of log flips that is algebraic in nature, that is, via f.g. algebras, as opposed to geometric flips. It accounts for all the currently known flips and flops, except possibly for flips arising from geometric invariant theory.
@article{TRSPY_2003_240_a5,
     author = {V. V. Shokurov},
     title = {Prelimiting {Flips}},
     journal = {Informatics and Automation},
     pages = {82--219},
     publisher = {mathdoc},
     volume = {240},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a5/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Prelimiting Flips
JO  - Informatics and Automation
PY  - 2003
SP  - 82
EP  - 219
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a5/
LA  - en
ID  - TRSPY_2003_240_a5
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Prelimiting Flips
%J Informatics and Automation
%D 2003
%P 82-219
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a5/
%G en
%F TRSPY_2003_240_a5
V. V. Shokurov. Prelimiting Flips. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 82-219. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a5/

[1] Alexeev V., “Boundedness and $K^2$ for log surfaces”, Intern. J. Math., 5:6 (1994), 779–810 | DOI | MR | Zbl

[2] F. Ambro, “Quasi-log varieties”, Biratsionalnaya geometriya: lineinye sistemy i konechno porozhdennye algebry, Sbornik statei, Tr. MIAN, 240, 2003, 220–239 ; http://arxiv.org/abs/math.AG/0112282 | MR | Zbl

[3] Ambro F., Boundary property, Preprint, Cambridge Univ., Aug. 2002

[4] Batyrev V. V., “The cone of effective divisors of threefolds”, Proc. Intern. Conf. on Algebra, V. 3 (Novosibirsk, 1989), Contemp. Math., 131, 1992, 337–352 | MR | Zbl

[5] Borisov A. A., Borisov L. A., “Osobye toricheskie mnogoobraziya Fano”, Mat. sb., 183:2 (1992), 134–141 | MR | Zbl

[6] Borisov A. A., Shokurov V. V., “Napravlennye ratsionalnye priblizheniya s nekotorymi prilozheniyami v algebraicheskoi geometrii”, Trudy MIAN, 73–81 | MR | Zbl

[7] Cassels J. W. S., An introduction to Diophantine approximation, Cambridge Univ. Press, Cambridge, 1957 ; Reprint Hafner Publ. Co., New York, 1972 | MR | Zbl

[8] Corti A., Semistable 3-fold flips, http://www.dpmms.cam.ac.uk/~corti/ssflips.ps.gz

[9] Dolgachev I., Hu Yi., “Variation of geometric invariant theory quotients”, Publ. Math. IHES, 1998, no. 87, 5–56 | MR | Zbl

[10] Danilov V. I., Shokurov V. V., Algebraic curves, algebraic manifolds and schemes, Encycl. Math. Sci., 23, Springer, Berlin, 1998 | MR

[11] Francia P., “Some remarks on minimal models, I”, Compos. Math., 40, 1980, 301–313 | MR | Zbl

[12] Fujino O., Mori S., A canonical bundle formula, Preprint RIMS, No 1293, Aug. 2000, Kyoto ; ; J. Diff. Geom., 56:1 (2000), 167–188 http://www.kurims.kyoto-u.ac.jp/home_page/preprint/PS/RIMS1293.ps.gz | MR | Zbl

[13] Hu Yi, Keel S., “Mori dream spaces and GIT”, Michigan Math. J., 48 (2000), 331–348 | DOI | MR | Zbl

[14] Iskovskikh V. A., “b-Divizory i funktsionalnye algebry po Shokurovu”, Trudy MIAN, 8–20 | MR | Zbl

[15] Iskovskikh V. A., “O rabote Shokurova “Prelimiting flips””, Trudy MIAN, 21–42 | MR | Zbl

[16] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Encycl. Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl

[17] Kachi Y., “Flips of semi-stable 4-folds whose degenerate fibers are unions of Cartier divisors which are terminal factorial 3-folds”, Math. Ann., 307 (1997), 647–662 | DOI | MR | Zbl

[18] Kachi Y., “Flips from 4-folds with isolated complete intersection singularities”, Amer. J. Math., 120 (1998), 43–102 | DOI | MR | Zbl

[19] Kawamata Y., “The cone of curves of algebraic varieties”, Ann. Math., 119 (1984), 603–633 | DOI | MR | Zbl

[20] Kawamata Y., “On the cone of divisors of Calabi–Yau fiber spaces”, Intern. J. Math., 8 (1997), 665–687 | DOI | MR | Zbl

[21] Kawamata Y., “Semistable minimal models of threefolds in positive or mixed characteristic”, J. Alg. Geom., 3 (1994), 463–491 | MR | Zbl

[22] Kawamata Y., “On Fujita's freeness conjecture for 3-folds and 4-folds”, Math. Ann., 308 (1997), 491–505 | DOI | MR | Zbl

[23] Kawamata Y., “Subadjunction of log canonical divisors for a subvariety of codimension $2$, I”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | MR | Zbl

[24] Kawamata Y., “Subadjunction of log canonical divisors, II”, Amer. J. Math., 120:5 (1998), 893–899 | DOI | MR | Zbl

[25] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[26] Keel S., Matsuki K., McKernan J., “Log abundance theorem for threefolds”, Duke Math. J., 75 (1994), 99–119 | DOI | MR | Zbl

[27] J. Kollár (ed.), “Flips and abundance for algebraic threefolds”, A Summer Seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR

[Ko] Kollár J., “Subadditivity of the Kodaira dimension: fibers of general type”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 361–398 | MR

[29] Kollár J., Mori S., Birational geometry of algebraic varieties, Cambridge Tracts Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | MR | Zbl

[30] Kulikov Vik. S., “Vyrozhdenie K3 poverkhnostei i poverkhnostei Enrikvesa”, Izv. AN SSSR. Ser. mat., 41 (1977), 1008–1042 | MR | Zbl

[31] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. Math., 116 (1982), 133–176 | DOI | MR | Zbl

[32] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1 (1988), 117–253 | DOI | MR | Zbl

[33] Nakayama N., Remarks on $\mathbb{Q}$-factorial singularity, Preprint Univ. Tokyo, 1986

[34] Prokhorov Yu. G., “K probleme razlozheniya Zariskogo”, Trudy MIAN, 43–72 | MR | Zbl

[35] Prokhorov Yu. G., Shokurov V. V., “Pervaya osnovnaya teorema o dopolneniyakh: ot globalnogo k lokalnomu”, Izv. RAN. Ser. mat., 65:6 (2001), 99–128 | MR | Zbl

[36] Prokhorov Yu. G., Shokurov V. V., The second main theorem on complements: from local to global, Preprint, Baltimore, Moscow, 2002

[37] Reid M., “Canonical 3-folds”, Géométrie algébrique (Angers, 1979), ed. A. Beauville, Sijthhoff and Noordhoff, Alphen, 1980, 273–310 | MR

[38] Reid M., “Chapters on algebraic surfaces”, Complex algebraic geometry, Lectures of a summer program (Park City, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 5–159 | MR | Zbl

[39] Reid M., “Decomposition of toric morphisms”, Arithmetic and geometry, V. 2, Progr. Math., 36, eds. M. Artin, J. Tate, Birkhäuser, Boston etc., 1983, 395–418 | MR

[40] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR

[41] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–203 | MR | Zbl

[42] Shokurov V. V., “Semi-stable 3-fold flips”, Izv. RAN. Ser. mat., 57:2 (1993), 165–222 | MR | Zbl

[43] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR | Zbl

[44] Shokurov V. V., “Anticanonical boundedness for curves”, Appendix to: Nikulin V. V., “Hyperbolic reflection group methods and algebraic varieties”, Higher dimensional complex varieties (Trento, June, 1994), eds. M. Andreatta, T. Peternell, de Gruyter, Berlin, New York, 1996, 321–328 | MR | Zbl

[45] Shokurov V. V., “$3$-fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699 | DOI | MR | Zbl

[46] Shokurov V. V., “O ratsionalnoi svyaznosti”, Mat. zametki, 68:5 (2000), 771–782 | MR | Zbl

[47] Shokurov V. V., “Letters of a bi-rationalist. IV: Geometry of log flips”, Algebraic geometry, eds. M. C. Beltrametti et al., de Gruyter, Berlin, New York, 2002, 313–328 | MR | Zbl

[48] Takagi H., 3-fold log flips according to V. V. Shokurov, Preprint, 1999

[49] Thaddeus M., “Geometric invariant theory and flips”, J. Amer. Math. Soc., 9:3 (1996), 691–723 | DOI | MR | Zbl