Directional Rational Approximations with Some Applications to Algebraic Geometry
Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the existence and order of accuracy of directional rational approximations of points in $\mathbb R^n$. As an application, we provide a simplified version of the lemma on Diophantine approximation. We also prove a generalization of the Rationality Theorem of log-MMP on the basis of a newer geometric approach.
@article{TRSPY_2003_240_a4,
     author = {A. A. Borisov and V. V. Shokurov},
     title = {Directional {Rational} {Approximations} with {Some} {Applications} to {Algebraic} {Geometry}},
     journal = {Informatics and Automation},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {240},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a4/}
}
TY  - JOUR
AU  - A. A. Borisov
AU  - V. V. Shokurov
TI  - Directional Rational Approximations with Some Applications to Algebraic Geometry
JO  - Informatics and Automation
PY  - 2003
SP  - 73
EP  - 81
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a4/
LA  - ru
ID  - TRSPY_2003_240_a4
ER  - 
%0 Journal Article
%A A. A. Borisov
%A V. V. Shokurov
%T Directional Rational Approximations with Some Applications to Algebraic Geometry
%J Informatics and Automation
%D 2003
%P 73-81
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a4/
%G ru
%F TRSPY_2003_240_a4
A. A. Borisov; V. V. Shokurov. Directional Rational Approximations with Some Applications to Algebraic Geometry. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 73-81. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a4/

[1] Ambro F., Quasi-log varieties, , Trudy MIAN, 29 pp. http://arxiv.org/abs/math.AG/0112282 | MR

[2] Borisov A., “On classification of toric singularities”, J. Math. Sci., 94:1 (1999), 1111–1113 ; http://front.math.ucdavis.edu/math.AG/9804137 | DOI | MR | Zbl

[3] Borisov A., Convex lattice polytopes and cones with few lattice points inside, from a birational geometry viewpoint, http://front.math.ucdavis.edu/math.AG/0001109

[4] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo inostr. lit., M., 1961 ; Cassels J. W. S., An introduction to Diophantine approximation, Cambridge Univ. Press, Cambridge, 1957 ; reprint Hafner Publ. Co., New York:, 1972 | MR | MR | Zbl

[5] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry. Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[6] Khinchin A. Ya., Tsepnye drobi, 4-e izd., Nauka, M., 1978 | MR

[7] Lawrence J., “Finite unions of closed subgroups of the $n$-dimensional torus”, Applied geometry and discrete mathematics, DIMACS Ser. Discr. Math. Theor. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991, 433–441 | MR

[8] Mori S., Morrison D. R., Morrison I., “On four-dimensional terminal quotient singularities”, Math. Comput., 51:184 (1988), 769–786 | DOI | MR | Zbl

[9] Reid M., Projective morphism according to Kawamata, Preprint, Univ. Warwick, 1983 | MR | Zbl

[10] Shmidt V., Diofantovy priblizheniya, Mir, M., 1983 ; Schmidt W. M., Diophantine approximation, Lect. Notes Math., 785, Springer, Berlin, 1980 | MR | MR | Zbl

[11] Shokurov V. V., “O zamknutom konuse krivykh trekhmernykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 48:1 (1984), 203–208 | MR

[12] Shokurov V. V., “3-fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699 | DOI | MR | Zbl

[13] Shokurov V. V., “Prelimiting flips”, Trudy MIAN, 82–219 | MR | Zbl