On Shokurov's Work \textit {Prelimiting Flips}
Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 21-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The proof of the existence of a 3-fold log flip is presented that is based on the ideas of Shokurov's work Prelimiting Flips. On the one hand, this paper is an attempt to explain the ideas of that work through a specific example, and, on the other hand, to single out a specific result from this large work, a new simple proof of the existence of a 3-fold log flip.
@article{TRSPY_2003_240_a2,
     author = {V. A. Iskovskikh},
     title = {On {Shokurov's} {Work} \textit {{Prelimiting} {Flips}}},
     journal = {Informatics and Automation},
     pages = {21--42},
     publisher = {mathdoc},
     volume = {240},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - On Shokurov's Work \textit {Prelimiting Flips}
JO  - Informatics and Automation
PY  - 2003
SP  - 21
EP  - 42
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/
LA  - ru
ID  - TRSPY_2003_240_a2
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T On Shokurov's Work \textit {Prelimiting Flips}
%J Informatics and Automation
%D 2003
%P 21-42
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/
%G ru
%F TRSPY_2003_240_a2
V. A. Iskovskikh. On Shokurov's Work \textit {Prelimiting Flips}. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 21-42. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/

[1] Ambro F., “Quasi-log varieties”, Trudy MIAN, 220–239 | MR | Zbl

[2] Ambro F., Notes after Shokurov's pl-flips, , 58 pp. http://www.dpmms.cam.ac.uk/~fa239/ plout.ps

[3] Borisov A. A., Shokurov V. V., “Napravlennye ratsionalnye priblizheniya s nekotorymi prilozheniyami v algebraicheskoi geometrii”, Trudy MIAN, 73–81 | MR | Zbl

[4] Corti A., $3$-fold flips after Shokurov, , 18 pp. http://www.dpmms.cam.ac.uk/~corti/ downloads_html/shok.ps | MR

[5] Fujino O., On special termination, Preprint, Cambridge Univ., 2002, 4 pp. | MR

[6] Iskovskikh V. A., “b-Divizory i funktsionalnye algebry po Shokurovu”, Trudy MIAN, 8–20 | MR | Zbl

[7] J. Kollár (ed.), “Flips and abundance for algebraic threefolds”, A Summer Seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR

[8] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[9] Kollár J., “Singularities of pairs”, Algebraic geometry Santa Cruz, 1995, Proc. Symp. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[10] Matsuki K., Introduction to the Mori program, Springer, New York, 2002, 478 pp. | MR | Zbl

[11] McKernan J., Circumscribed divisors, Preprint, Cambridge Univ., 2002

[12] Prokhorov Yu. G., “K probleme razlozheniya Zariskogo”, Trudy MIAN, 43–72 | MR | Zbl

[13] Reid M., “Chapters on algebraic surfaces”, Complex algebraic geometry: Lectures of a summer program (Park City, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 5–159 | MR | Zbl

[14] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR

[15] Shokurov V. V., “$3$-fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699 | DOI | MR | Zbl

[16] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–201 ; 57:6 (1993), 141–175 | MR | Zbl | MR | Zbl

[17] Shokurov V. V., “Prelimiting flips”, Trudy MIAN, 82–219 | MR | Zbl

[18] Takagi H., PL-flips after Shokurov, Preprint, Cambridge Univ., 2002 | Zbl