On Shokurov's Work \textit {Prelimiting Flips}
Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 21-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The proof of the existence of a 3-fold log flip is presented that is based on the ideas of Shokurov's work Prelimiting Flips. On the one hand, this paper is an attempt to explain the ideas of that work through a specific example, and, on the other hand, to single out a specific result from this large work, a new simple proof of the existence of a 3-fold log flip.
@article{TRSPY_2003_240_a2,
     author = {V. A. Iskovskikh},
     title = {On {Shokurov's} {Work} \textit {{Prelimiting} {Flips}}},
     journal = {Informatics and Automation},
     pages = {21--42},
     publisher = {mathdoc},
     volume = {240},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - On Shokurov's Work \textit {Prelimiting Flips}
JO  - Informatics and Automation
PY  - 2003
SP  - 21
EP  - 42
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/
LA  - ru
ID  - TRSPY_2003_240_a2
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T On Shokurov's Work \textit {Prelimiting Flips}
%J Informatics and Automation
%D 2003
%P 21-42
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/
%G ru
%F TRSPY_2003_240_a2
V. A. Iskovskikh. On Shokurov's Work \textit {Prelimiting Flips}. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 21-42. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a2/