Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_240_a0, author = {V. A. Iskovskikh and V. V. Shokurov}, title = {Preface}, journal = {Informatics and Automation}, pages = {5--7}, publisher = {mathdoc}, volume = {240}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a0/} }
V. A. Iskovskikh; V. V. Shokurov. Preface. Informatics and Automation, Birational geometry: Linear systems and finitely generated algebras, Tome 240 (2003), pp. 5-7. http://geodesic.mathdoc.fr/item/TRSPY_2003_240_a0/
[1] Alexeev V., “Boundedness and $K^2$ for log surfaces”, Intern. J. Math., 5:6 (1994), 779–810 | DOI | MR | Zbl
[2] Ambro F., “Quasi-log varieties”, Tr. MIAN, 220–239 | MR | Zbl
[3] Ambro F., Notes after Shokurov's pl-flips, , 58 pp. http://www.dpmms.cam.ac.uk/~fa239/ plout.ps
[4] Ambro F., Boundary property, Preprint, Cambridge Univ., Aug. 2002
[5] Borisov A. A., Shokurov V. V., “Napravlennye ratsionalnye priblizheniya s nekotorymi prilozheniyami v algebraicheskoi geometrii”, Tr. MIAN, 73–81 | MR | Zbl
[6] Corti A., $3$-fold flips after Shokurov, , 18 pp. http://www.dpmms.cam.ac.uk/~corti/ downloadse_html/shok.ps | MR
[7] J. Kollár (ed.), “Flips and abundance for algebraic threefolds”, A Summer Seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[8] Iskovskikh V. A., “b-Divizory i funktsionalnye algebry po Shokurovu”, Tr. MIAN, 8–20 | MR | Zbl
[9] Prokhorov Yu. G., Shokurov V. V., The second main theorem on complements: from local to global, Preprint, Baltimore, Moscow, 2001 | MR
[10] Reid M., $3$-fold links, http://www.maths.warwick.ac.uk/~miles/3folds
[11] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–201 | MR | Zbl
[12] Shokurov V. V., “$3$-fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699 | DOI | MR | Zbl
[13] Shokurov V. V., “Prelimiting flips”, Tr. MIAN, 82–219 | MR | Zbl