Extension Theorem in the Theory of Isohedral Tilings and Its Applications
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 146-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

A detailed proof is given for one of the basic theorems in the theory of isohedral tilings, the extension theorem, which describes necessary and sufficient conditions under which a given polyhedron admits an isohedral tiling of a space of constant curvature.
@article{TRSPY_2002_239_a9,
     author = {N. P. Dolbilin and V. S. Makarov},
     title = {Extension {Theorem} in the {Theory} of {Isohedral} {Tilings} and {Its} {Applications}},
     journal = {Informatics and Automation},
     pages = {146--169},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a9/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - V. S. Makarov
TI  - Extension Theorem in the Theory of Isohedral Tilings and Its Applications
JO  - Informatics and Automation
PY  - 2002
SP  - 146
EP  - 169
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a9/
LA  - ru
ID  - TRSPY_2002_239_a9
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A V. S. Makarov
%T Extension Theorem in the Theory of Isohedral Tilings and Its Applications
%J Informatics and Automation
%D 2002
%P 146-169
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a9/
%G ru
%F TRSPY_2002_239_a9
N. P. Dolbilin; V. S. Makarov. Extension Theorem in the Theory of Isohedral Tilings and Its Applications. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 146-169. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a9/

[1] Aleksandrov A. D., “O zapolnenii prostranstva mnogogrannikami”, Vestn. LGU. Ser. mat., fiz., khim., 9 (1954), 33–43 | MR

[2] Böröczky K., “Gömbkitöltések állandó görbületü terekben, I, II”, Mat. Lapok, 25 (1974), 265–306 ; 26 (1975), 67–90 | MR | MR

[3] Venkov B. A., “O nekotorom klasse evklidovykh mnogogrannikov”, Vestn. LGU. Ser. mat., fiz., khim., 9 (1954), 11–31 | MR

[4] Vinberg E. B., Shvartsman O. V., “Diskretnye gruppy dvizhenii prostranstv postoyannoi krivizny”, Geometriya – 2, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 29, VINITI, M., 1988, 147–259

[5] Voronoi G. F., “Issledovanie o primitivnykh paralleloedrakh”, Sobr. soch., t. 2, AN USSR, Kiev, 1952

[6] Coxeter H. S. M., “Discrete groups generated by reflections”, Ann. Math. Ser. 2, 35:3 (1934), 588–621 | DOI | MR | Zbl

[7] Delone B. N., “Teoriya planigonov”, Izv. AN SSSR. Ser. mat., 23 (1959), 365–386 | MR | Zbl

[8] Delone B. N., “Dokazatelstvo osnovnoi teoremy stereoedrov”, DAN SSSR, 138:6 (1961), 1270–1272 | MR | Zbl

[9] Delone B. N., Dolbilin N. P., Shtogrin M. I., Galiulin R. V., “Lokalnyi kriterii pravilnosti sistemy tochek”, DAN SSSR, 227:1 (1976), 19–21 | MR | Zbl

[10] Dolbilin N. P., “O lokalnykh svoistvakh diskretnykh pravilnykh sistem”, DAN SSSR, 230:3 (1976), 516–519 | MR | Zbl

[11] Dolbilin N. P., “The countability of a tiling family and the periodicity of tiling”, Discr. and Comput. Geom., 13 (1995), 405–414 | DOI | MR | Zbl

[12] Dolbilin N. P., “Which clusters can form a crystal?”, Voronoi's impact on modern science, Book 2, Proc. Inst. Math. NAS Ukraine, 21, eds. P. Engel, H. Syta, Inst. Math., Kyiv, 1998, 96–104 | Zbl

[13] Dolbilin N. P., “The extension theorem”, Discr. Math., 221:1–3 (2000), 43–59 | DOI | MR | Zbl

[14] Dolbilin N. P., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry, Fields Inst. Monogr., 10, ed. J. Patera, Amer. Math. Soc., Providence, RI, 1998, 193–200 | MR

[15] Engel P., Geometric crystallography, D. Reidel, Dordrecht, 1986, 266 pp.

[16] Jorgensen T., Marden A., Generic fundamental polyhedra for Kleinian groups, Repts Math. Sci. Res. Inst., Berkeley, 1986, 30 pp.

[17] Milnor J., “Hilbert's problem 18: On crystallographic groups, fundamental domains, and on sphere packing”, Mathematical developments arising from Hilbert problems, Proc. Symp. Pure. Math., 28, Amer. Math. Soc., Providence, RI, 1976, 491–506 | MR

[18] Makarov V. S., “Ob odnom klasse dvumernykh fedorovskikh grupp”, Izv. AN SSSR. Ser. mat., 31:3 (1967), 531–542 | MR | Zbl

[19] Makarov V. S., “Ob odnom nepravilnom razbienii $n$-mernogo prostranstva Lobachevskogo kongruentnymi mnogogrannikami”, Diskretnaya geometriya i topologiya, Posv. 100-letiyu so dnya rozhdeniya B. N. Delone, Tr. MIAN, 196, Nauka, M., 1991, 93–96 | MR

[20] McMullen P., “Convex bodies which tile space by translation”, Mathematika, 27 (1980), 113–121 | DOI | MR | Zbl

[21] Maskit B., “On Poincare's theorem for fundamental polygons”, Adv. Math., 7:3 (1971), 219–230 | DOI | MR | Zbl

[22] Minkowski H., “Discontinuitätsbereich für Arithm. Äquivalenz”, J. Reine und Angew. Math., 129 (1905), 220–247

[23] Poincaré H., “Théorie des group fucshiennes”, Acta Math., 1 (1882), 1–62 | DOI | MR | Zbl

[24] Schattschneider D., Dolbilin N. P., “One corona is enough for the Euclidean plane”, Quasicrystals and discrete geometry, Fields Inst. Monogr., 10, ed. J. Patera, Amer. Math. Soc., Providence, RI, 1998, 207–246 | MR | Zbl