Extremal and Nonextendible Polycycles
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 127-145

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of $(r,q)$-polycycles, i.e. planar graphs $G$ that admit a realization on the plane such that all internal vertices have degree $q$, all boundary vertices have degree at most $q$, and all internal faces are combinatorial $r$-gons; moreover, the vertices, edges, and internal faces form a cell complex. Two extremal problems related to chemistry are solved: the description of $(r,q)$-polycycles with the maximal number of internal vertices for a given number of faces, and the description of nonextendible $(r,q)$-polycycles. Numerous examples of isohedral polycycles (whose symmetry groups are transitive on faces) are presented. The main proofs involve an abstract cell complex $\mathbf P(G)$ obtained from a planar realization of the graph $G$ by replacing all its internal faces by regular Euclidean $r$-gons.
@article{TRSPY_2002_239_a8,
     author = {M. Deza and M. I. Shtogrin},
     title = {Extremal and {Nonextendible} {Polycycles}},
     journal = {Informatics and Automation},
     pages = {127--145},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a8/}
}
TY  - JOUR
AU  - M. Deza
AU  - M. I. Shtogrin
TI  - Extremal and Nonextendible Polycycles
JO  - Informatics and Automation
PY  - 2002
SP  - 127
EP  - 145
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a8/
LA  - ru
ID  - TRSPY_2002_239_a8
ER  - 
%0 Journal Article
%A M. Deza
%A M. I. Shtogrin
%T Extremal and Nonextendible Polycycles
%J Informatics and Automation
%D 2002
%P 127-145
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a8/
%G ru
%F TRSPY_2002_239_a8
M. Deza; M. I. Shtogrin. Extremal and Nonextendible Polycycles. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 127-145. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a8/