Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 118-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf S$ be an inflation species in $\mathbb E^2$ with an inflation factor $\eta$. The following cases are possible: (1) $\mathbf S$ is face-to-face. Then, trivially, there are only finitely many clusters in $\mathbf S$ that fit into a circle of radius $R$, where $R$ is the maximum of the diameters of the prototiles. This property is called locally finite complexity (LFC). If a species is repetitive, it is necessarily in (LFC). (2) $\mathbf S$ is not face-to-face, but $\eta$ is a PV-number. The only class of examples of this type known to the author was published by R. Kenyon in 1992. (3) $\mathbf S$ is not face-to-face and $\eta$ is not a PV-number. For this case, a criterion will be presented that says the following: If, after a finite number of steps, a certain inequality issatisfied, then $\mathbf S$ is not in (LFC) (and, hence, cannot be repetitive). It seems that this is a generic subcase of case (3). In other words, in case (3) (LFC)-species are very rare. No inflation species is known that is not face-to-face with inflation factor $\eta$ not being a PV-number but which is nevertheless in (LFC).
@article{TRSPY_2002_239_a7,
     author = {L. Danzer},
     title = {Inflation {Species} of {Planar} {Tilings} {Which} {Are} {Not} of {Locally} {Finite} {Complexity}},
     journal = {Informatics and Automation},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a7/}
}
TY  - JOUR
AU  - L. Danzer
TI  - Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
JO  - Informatics and Automation
PY  - 2002
SP  - 118
EP  - 126
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a7/
LA  - en
ID  - TRSPY_2002_239_a7
ER  - 
%0 Journal Article
%A L. Danzer
%T Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
%J Informatics and Automation
%D 2002
%P 118-126
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a7/
%G en
%F TRSPY_2002_239_a7
L. Danzer. Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 118-126. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a7/

[1] Perron O., “Zur Theorie der Matrizen”, Math. Ann., 64 (1907), 246–263

[2] Seneta E., Nonnegative matrices, George Allen Unwin, London, 1973 | Zbl

[3] Grünbaum B., Shephard G. C., Tilings and patterns, Freeman, New York, 1987 | MR | Zbl

[4] Kenyon R., “Self-replicating tilings”, Symbolic dynamics and its applications, Contemp. Math., 135, ed. P. Walters, Amer. Math. Soc., Providence, RI, 1992, 239–263 | MR

[5] Senechal M., Quasicrystals and geometry, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[6] Nischke K.-P., Danzer L., “A construction of inflation rules based on $n$-fold symmetry”, Discr. and Comput. Geom., 15:2 (1996), 221–236 | DOI | MR | Zbl

[7] Solomyak B., “Nonperiodicity implies unique composition for self-similar translationally finite tilings”, Discr. and Comput. Geom., 20:2 (1998), 265–279 | DOI | MR | Zbl

[8] Sadun L., “Some generalizations of the pinwheel tiling”, Discr. and Comput. Geom., 20:1 (1998), 79–110 | DOI | MR | Zbl

[9] Lagarias J. C., “Geometric models for quasicrystals. I: Delone sets of finite type”, Discr. and Comput. Geom., 21:2 (1999), 161–191 | DOI | MR | Zbl

[10] Danzer L., “An inflation-species of planar triangular tilings which is not repetitive”, Ferroelectrics, 250:1–4 (2001), 163 ; Proc. Aperiodic, 2000 | DOI

[11] Danzer L., Ophuysen G., “A species of planar triangular tilings with inflation factor $\sqrt{-\tau}$”, Punjab Univ. Res. Bull. Sci., 50 (2000), 137–175 | MR

[12] Lagarias J. C., Pleasants P. A. B., Repetitive Delone sets and perfect quasicrystals, http://arxiv.org/abs/math.DS/9909033