Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_239_a7, author = {L. Danzer}, title = {Inflation {Species} of {Planar} {Tilings} {Which} {Are} {Not} of {Locally} {Finite} {Complexity}}, journal = {Informatics and Automation}, pages = {118--126}, publisher = {mathdoc}, volume = {239}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a7/} }
L. Danzer. Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 118-126. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a7/
[1] Perron O., “Zur Theorie der Matrizen”, Math. Ann., 64 (1907), 246–263
[2] Seneta E., Nonnegative matrices, George Allen Unwin, London, 1973 | Zbl
[3] Grünbaum B., Shephard G. C., Tilings and patterns, Freeman, New York, 1987 | MR | Zbl
[4] Kenyon R., “Self-replicating tilings”, Symbolic dynamics and its applications, Contemp. Math., 135, ed. P. Walters, Amer. Math. Soc., Providence, RI, 1992, 239–263 | MR
[5] Senechal M., Quasicrystals and geometry, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[6] Nischke K.-P., Danzer L., “A construction of inflation rules based on $n$-fold symmetry”, Discr. and Comput. Geom., 15:2 (1996), 221–236 | DOI | MR | Zbl
[7] Solomyak B., “Nonperiodicity implies unique composition for self-similar translationally finite tilings”, Discr. and Comput. Geom., 20:2 (1998), 265–279 | DOI | MR | Zbl
[8] Sadun L., “Some generalizations of the pinwheel tiling”, Discr. and Comput. Geom., 20:1 (1998), 79–110 | DOI | MR | Zbl
[9] Lagarias J. C., “Geometric models for quasicrystals. I: Delone sets of finite type”, Discr. and Comput. Geom., 21:2 (1999), 161–191 | DOI | MR | Zbl
[10] Danzer L., “An inflation-species of planar triangular tilings which is not repetitive”, Ferroelectrics, 250:1–4 (2001), 163 ; Proc. Aperiodic, 2000 | DOI
[11] Danzer L., Ophuysen G., “A species of planar triangular tilings with inflation factor $\sqrt{-\tau}$”, Punjab Univ. Res. Bull. Sci., 50 (2000), 137–175 | MR
[12] Lagarias J. C., Pleasants P. A. B., Repetitive Delone sets and perfect quasicrystals, http://arxiv.org/abs/math.DS/9909033