Error of Asymptotic Formulae for Volume Approximation of Convex
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 106-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The error of the asymptotic formula for volume approximation of sufficiently differentiable convex bodies in $\mathbb E^3$ by circumscribed convex polytopes is estimated. This then is applied to the isoperimetric problem for convex polytopes in a Minkowski 3-space.
@article{TRSPY_2002_239_a6,
     author = {P. M. Gruber},
     title = {Error of {Asymptotic} {Formulae} for {Volume} {Approximation} of {Convex}},
     journal = {Informatics and Automation},
     pages = {106--117},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a6/}
}
TY  - JOUR
AU  - P. M. Gruber
TI  - Error of Asymptotic Formulae for Volume Approximation of Convex
JO  - Informatics and Automation
PY  - 2002
SP  - 106
EP  - 117
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a6/
LA  - en
ID  - TRSPY_2002_239_a6
ER  - 
%0 Journal Article
%A P. M. Gruber
%T Error of Asymptotic Formulae for Volume Approximation of Convex
%J Informatics and Automation
%D 2002
%P 106-117
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a6/
%G en
%F TRSPY_2002_239_a6
P. M. Gruber. Error of Asymptotic Formulae for Volume Approximation of Convex. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 106-117. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a6/

[1] Blaschke W., Kreis und Kugel, 2. Aufl., de Gruyter, Berlin, 1956 | MR | Zbl

[2] Böröczky K., Jr., “The error of polytopal approximation with respect to the symmetric difference metric and the $L_p$ metric”, Israel J. Math., 117 (2000), 1–28 | DOI | MR | Zbl

[3] Böröczky K., Jr., Personal communication, 2000

[4] Fejes Tóth L., Lagerungen in der Ebene, auf der Kugel und im Raum, Springer-Verl., Berlin, 1953 ; 2. Aufl., 1972 | MR | Zbl

[5] Diskant V. I., “Utochnenie izoperimetricheskogo neravenstva i teoremy ustoichivosti v teorii vypuklykh tel”, Tr. Inst. matematiki, 14, Novosibirsk, 1989, 98–132 | MR | Zbl

[6] Gruber P. M., “Volume approximation of convex bodies by circumscribed polytopes”, DIMACS Ser. Discr. Math. Theor. Comput. Sci., 4, 1991, 309–317 | MR | Zbl

[7] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of convex geometry, A, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 319–345 | MR | Zbl

[8] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, II”, Forum Math., 5 (1993), 521–538 | DOI | MR

[9] Gruber P. M., “Comparisons of best and random approximation of convex bodies by polytopes”, Rend. Circ. Mat. Palermo. Ser. 2. Suppl., 50 (1997), 189–216 | MR | Zbl

[10] Gruber P. M., “A short analytic proof of Fejes Tóth's theorem on sums of moments”, Aequationes Math., 58 (1999), 291–295 | DOI | MR | Zbl

[11] Gruber P. M., “Optimal configurations of finite sets in Riemannian 2-manifolds”, Geom. Dedicata, 84:1–3 (2001), 271–320 | DOI | MR | Zbl

[12] Gruber P. M., “Error of asymptotic formulae for volume approximation of convex bodies in $\mathbb{E}^d$”, Monatsh. Math., 135 (2002), 279–304 | DOI | MR | Zbl

[13] Leichtweiss K., “Convexity and differential geometry”, Handbook of convex geometry, B, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 1045–1080 | MR | Zbl

[14] Ludwig M., “Asymptotic approximation of convex curves”, Arch. Math., 63 (1994), 377–384 | DOI | MR | Zbl

[15] Schneider R., “Zur optimalen Approximation konvexer Hyperflächen durch Polyeder”, Math. Ann., 256 (1981), 289–301 | DOI | MR | Zbl

[16] Schneider R., Convex bodies: the Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993 | MR

[17] Tabachnikov S., “On the dual billiard problem”, Adv. Math., 115 (1995), 221–249 | DOI | MR | Zbl

[18] Thompson A. C., Minkowski geometry, Cambridge Univ. Press, Cambridge, 1996 | MR