Sails and Hilbert Bases
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 98-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sail is the boundary of a Klein polyhedron. A relation between certain properties of sails is determined. In particular, a criterion is presented for the Hilbert basis of the semigroup of integer points of a cone in $\mathbb R^3$ and $\mathbb R^4$ to be contained in the sail.
@article{TRSPY_2002_239_a5,
     author = {O. N. German},
     title = {Sails and {Hilbert} {Bases}},
     journal = {Informatics and Automation},
     pages = {98--105},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a5/}
}
TY  - JOUR
AU  - O. N. German
TI  - Sails and Hilbert Bases
JO  - Informatics and Automation
PY  - 2002
SP  - 98
EP  - 105
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a5/
LA  - ru
ID  - TRSPY_2002_239_a5
ER  - 
%0 Journal Article
%A O. N. German
%T Sails and Hilbert Bases
%J Informatics and Automation
%D 2002
%P 98-105
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a5/
%G ru
%F TRSPY_2002_239_a5
O. N. German. Sails and Hilbert Bases. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 98-105. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a5/

[1] Lachaud G., “Sails and Klein polyhedra”, Contemp. Math., 210, 1998, 373–385 | MR | Zbl

[2] Lachaud G., Voiles et polyèdres de Klein, 1, 2, Preprints No 95–22, Lab. Math. Discr., CNRS, Marseille–Luminy, 1995

[3] Mussafir Zh.-O., “Parusa i bazisy Gilberta”, Funkts. analiz i ego pril., 34:2 (2000), 43–49 | MR

[4] Bryuno A. D., Parusnikov V. I., “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Mat. zametki, 56:4 (1994), 9–27 | MR | Zbl

[5] White G. K., “Lattice tetrahedra”, Canad. J. Math., 16 (1964), 389–396 | MR | Zbl