Equivariant Maps and Some Problems of the Geometry of Convex Sets
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of equivariant topology are applied to some problems of convex set geometry. In particular, it is proved that a pyramid homothetic to a regular pyramid of certain type with a regular $p$-gon as the base, where $p$ is an odd prime, can be inscribed in any convex $(p+5)/2$-dimensional body.
@article{TRSPY_2002_239_a4,
     author = {A. Yu. Volovikov},
     title = {Equivariant {Maps} and {Some} {Problems} of the {Geometry} of {Convex} {Sets}},
     journal = {Informatics and Automation},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a4/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Equivariant Maps and Some Problems of the Geometry of Convex Sets
JO  - Informatics and Automation
PY  - 2002
SP  - 83
EP  - 97
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a4/
LA  - ru
ID  - TRSPY_2002_239_a4
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Equivariant Maps and Some Problems of the Geometry of Convex Sets
%J Informatics and Automation
%D 2002
%P 83-97
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a4/
%G ru
%F TRSPY_2002_239_a4
A. Yu. Volovikov. Equivariant Maps and Some Problems of the Geometry of Convex Sets. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 83-97. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a4/

[1] Babenko I. K., Bogatyi S. A., “K otobrazheniyu sfery v evklidovo prostranstvo”, Mat. zametki, 46:3 (1989), 3–8 | MR | Zbl

[2] Bogatyi S. A., “Topologicheskie metody v kombinatornykh zadachakh”, UMN, 41:6 (1986), 37–47 | MR

[3] Volovikov A. Yu., “K teoreme Yanga o funktsiyakh na sfere”, IX Vsesoyuz. geom. konf., Tez. soobsch., Shtiintsa, Kishinev, 1988, 68–69 | MR

[4] Volovikov A. Yu., “Teorema tipa Burzhena–Yanga dlya $\mathbb{Z}^n_p$-deistviya”, Mat. sb., 183:7 (1992), 115–144 | MR

[5] Makeev V. V., “Prostranstvennye obobscheniya nekotorykh teorem o vypuklykh figurakh”, Mat. zametki, 36:3 (1984), 405–415 | MR | Zbl

[6] Makeev V. V., “O nekotorykh voprosakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin. gos. un-t, Kalinin, 1986, 75–85 | MR | Zbl

[7] Makeev V. V., “Zadacha Knastera o nepreryvnykh otobrazheniyakh sfery v evklidovo prostranstvo”, Zap. nauch. seminarov LOMI, 167, 1988, 169–178 | MR | Zbl

[8] Makeev V. V., “Zadacha Knastera i pochti sfericheskie secheniya”, Mat. sb., 180:3 (1989), 424–431 | Zbl

[9] Shvarts A. S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl

[10] Alexander J. C., Yorke J. A., “The homotopy continuation method: numerically implementable topological procedures”, Trans. Amer. Math. Soc., 242 (1978), 271–284 | DOI | MR | Zbl

[11] Alligood K. T., “Topological conditions for the continuation of fixed points”, Lect. Notes Math., 886, 1981, 20–32 | MR | Zbl

[12] Borel A., “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math. Ser. 2, 57 (1953), 115–207 | DOI | MR | Zbl

[13] Chen W., “Counterexamples to Knaster's conjecture”, Topology, 37:2 (1998), 401–405 | DOI | MR | Zbl

[14] Floyd E. E., “Real-valued mappings of spheres”, Proc. Amer. Math. Soc., 6 (1955), 957–959 | DOI | MR | Zbl

[15] Knaster B., “Problem 4”, Colloq. Math., 1947, no. 1, 30

[16] Munkholm H. J., “On the Borsuk–Ulam theorem for $\mathbb{Z}_{p^\alpha}$ actions on $S^{2n-1}$ and maps $S^{2n-1}\to\mathbb{R}^m$”, Osaka J. Math., 7 (1970), 451–456 | MR | Zbl

[17] Munkholm H. J., Nakaoka M., “The Borsuk–Ulam theorem and formal group laws”, Osaka J. Math., 9 (1972), 337–349 | MR | Zbl

[18] Serre J.-P., “Homologie singulière des espaces fibrés. Applications”, Ann. Math. Ser. 2, 54 (1951), 425–505 | DOI | MR | Zbl

[19] Volovikov A., “Dimension and $C$-essentiality of $\mathbb{Z}_p$-coincidence set of map”, Quest. and Answers Gen. Topol., 8:1 (1990), 207–217 | MR | Zbl

[20] Yamabe H., Yujobô Z., “On the continuous function defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl

[21] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson, I”, Ann. Math. Ser. 2, 60 (1954), 262–282 | DOI | MR | Zbl

[22] Bourgin D. G., “Multiplicity of solutions in frame mappings”, Ill. J. Math., 9 (1965), 169–177 | MR | Zbl

[23] Su F. E., “Borsuk–Ulam implies Brouwer: A direct construction”, Amer. Math. Monthly, 104:9 (1997), 855–859 | DOI | MR | Zbl

[24] Bajmóczy E. G., Bárány I., “On a common generalization of Borsuk's and Radon's theorem”, Acta Math. Hung., 34 (1979), 347–350 | DOI | MR | Zbl

[25] Bárány I., Shlosman S. B., Szücs A., “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. Ser. 2, 23 (1981), 158–164 | DOI | MR | Zbl

[26] Tverberg H., “A generalization of Radon's theorem”, J. London Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl

[27] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[28] Volovikov A. Yu., “K topologicheskomu obobscheniyu teoremy Tverberga”, Mat. zametki, 59:3 (1996), 454–456 | MR | Zbl

[29] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl

[30] Bogatyi S. A., “Tsvetnaya teorema Tverberga”, Vestn. MGU. Matematika. Mekhanika, 1999, no. 3, 14–19 | MR | Zbl

[31] Volovikov A. Yu., “Ob indekse $G$-prostranstv”, Mat. sb., 191:9 (2000), 3–22 | MR | Zbl

[32] Cohen F., Lusk E. L., “Configuration-like spaces and the Borsuk–Ulam theorem”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl

[33] Volovikov A. Yu., “Ob odnom svoistve funktsii na sfere”, Mat. zametki, 70:5 (2001), 679–690 | MR | Zbl