Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_239_a3, author = {S. A. Bogatyi}, title = {Borsuk's {Conjecture,} {Ryshkov} {Obstruction,} {Interpolation,} {Chebyshev} {Approximation,} {Transversal} {Tverberg's} {Theorem,} and {Problems}}, journal = {Informatics and Automation}, pages = {63--82}, publisher = {mathdoc}, volume = {239}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/} }
TY - JOUR AU - S. A. Bogatyi TI - Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems JO - Informatics and Automation PY - 2002 SP - 63 EP - 82 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/ LA - ru ID - TRSPY_2002_239_a3 ER -
%0 Journal Article %A S. A. Bogatyi %T Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems %J Informatics and Automation %D 2002 %P 63-82 %V 239 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/ %G ru %F TRSPY_2002_239_a3
S. A. Bogatyi. Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 63-82. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/
[1] Ryshkov S. S., “O $k$-regulyarnykh vlozheniyakh”, DAN SSSR, 127:2 (1959), 272–273 | Zbl
[2] Borsuk K., “On the $k$-independent subsets of the Euclidean space and of the Hilbert space”, Bull. Acad. Sci. Polon, 5:4 (1957), 351–356 | MR | Zbl
[3] Borsuk K., “Zamechaniya k vlozhimosti mnozhestv v evklidovy prostranstva”, Tr. III Vsesoyuz. mat. s'ezda, t. 4, M., 1959, 197–198 | MR
[4] Hurewicz W., “Dimensionstheorie und Cartesische Räume”, Koninkl. Akad. Wetensch. Proc. Sect. Sci., 34 (1931), 399–400 ; Collect. Works Witold Hurewicz, Amer. Math. Soc., Providence, RI, 1995 | Zbl
[5] Hurewicz W., “Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Räume”, Sitzungsber. Preuß. Akad. Wissensch., 4 (1933), 754–768; Collect. Works Witold Hurewicz, Amer. Math. Soc., Providence, RI, 1995
[6] McCullough D., Rubin L. R., “Some $m$-dimensional compacta admitting a dense set of imbeddings into $\mathbb R^{2m}$”, Fund. Math., 133 (1989), 237–245 | MR | Zbl
[7] Spież S., “On pairs of compacta with $\dim(X\times Y)\dim X+\dim Y$”, Fund. Math., 135 (1990), 213–222 | MR | Zbl
[8] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersections of compacta of complementary dimensions in Euclidean space”, Topol. and Appl., 38 (1991), 237–253 | DOI | MR | Zbl
[9] Dranishnikov A. N., West J., “On compacta that intersect unstably in Euclidean space”, Topol. and Appl., 43 (1992), 181–187 | DOI | MR | Zbl
[10] Dranišnikov A. N., Repovš D., Ščepin E. V., “On approximation and embedding problems for cohomological dimension”, Topol. and Appl., 55 (1994), 67–86 | DOI | MR | Zbl
[11] Dranishnikov A. N., Repovš D., Ščepin E. V., “Transversal intersection formula for compacta”, Topol. and Appl., 85 (1998), 93–117 | DOI | MR | Zbl
[12] Bogatyi S. A., “Geometriya otobrazhenii v evklidovo prostranstvo”, UMN, 53:5 (1998), 27–56 | MR | Zbl
[13] van Kampen E. R., “Komplexe in euklidischen Räumen”, Abhandl. Math. Sem. Hamburg Univ., 9 (1932), 72–78 | Zbl
[14] Flores A., “Über $n$-dimensionale Komplexe, die im $\mathbb{R}_{2n+1}$ absolut selbstverschlungen sind”, Ergegb. Math. Kolloq., 6 (1935), 4–7 | Zbl
[15] Makarychev Yu., “A short proof of Kuratowski's graph planarity criterion”, J. Graph Theory, 25 (1997), 129–131 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[16] Claytor S., “Peanian continua not imbeddable in a spherical surface”, Ann. Math., 38 (1937), 631–646 | DOI | MR | Zbl
[17] Sarkaria K. S., “Kuratowski complexes”, Topology, 30 (1991), 67–76 | DOI | MR | Zbl
[18] Wu W. T., “On the realization of complexes in a Euclidean space, I, II, III”, Sci. Sinica, 7 (1958), 251–297 ; 365–387; 8 (1959), 133–150 | MR | Zbl | MR
[19] Karimov U. H., Repovš D., “On embeddability of contractible $k$-dimensional compacta into $\mathbb{R}^{2k}$”, Topol. and Appl., 113 (2001), 81–85 | DOI | MR | Zbl
[20] Haefliger A., “Plongements differentiables dans le domaine stable”, Comment. Math. Helv., 37 (1962/63), 155–176 | DOI | MR | Zbl
[21] Weber C., “Plongements de polyedres dans le domaine metastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl
[22] Repovš D., Skopenkov A. B., “Embeddability and isotopy of polyhedra in Euclidean spaces”, Tr. MIAN, 212, 1996, 173–187 | MR
[23] Repovsh D., Skopenkov A. B., “Koltsa Borromeo i prepyatstviya k vlozhimosti”, Tr. MIAN, 225, 1999, 331–338 | MR | Zbl
[24] Gitler S., Immersion and embedding of manifolds, Preprint, 1971 | MR
[25] Mayer K. H., “Nonimmersion theorems for Grassmann manifolds”, Topol. and Appl., 96:2 (1999), 171–184 | DOI | MR | Zbl
[26] James I. M., The topology of Stiefel manifolds, LMS Lect. Note Ser., 24, Cambridge Univ. Press, Cambridge, 1976, 165 pp. | MR | Zbl
[27] Eilenberg S., “Remarque sur un théorème de W. Hurewicz”, Fund. Math., 24 (1935), 156–159 | Zbl
[28] Pasynkov B. A., “O razmernosti i geometrii otobrazhenii”, DAN SSSR, 221:3 (1975), 543–546 | MR | Zbl
[29] Schepin E. V., “Arifmetika teorii razmernosti”, UMN, 53:5 (1998), 115–212 | MR | Zbl
[30] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl
[31] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl
[32] Fadell E., Neuwirth L., “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | MR | Zbl
[33] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | MR
[34] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR
[35] Ostrand P., “Dimension of metric spaces and Hilbert's problem 13”, Bull. Amer. Math. Soc., 7 (1965), 619–622 | DOI | MR
[36] Sternfeld Y., “Hilbert's 13th problem and dimension”, Lect. Notes Math., 1376, 1989, 1–49 | MR | Zbl
[37] Conway J., Gordon C., “Knots and links in spatial graphs”, J. Graph Theory, 7 (1983), 445–453 | DOI | MR | Zbl
[38] Robertson N., Seymour P. D., Thomas R., “A survey of linkless embeddings”, Contemp. Math., 147, 1993, 125–136 | MR | Zbl
[39] Robertson N., Seymour P. D., Thomas R., “Sachs' linkless embedding conjecture”, J. Comb. Theory B., 64 (1995), 185–227 | DOI | MR | Zbl
[40] Seymour P., “Progress on the four-color theorem”, Proc. Intern. Congr. Math., v. 1 (Zürich, 1994), Birkhäuser, Basel, 1995, 183–195 | MR | Zbl
[41] Lovász L., Schrijver A., “A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs”, Proc. Amer. Math. Soc., 126:5 (1998), 1275–1285 | DOI | MR | Zbl
[42] Bogatyi S. A., Fedorchuk V. V., van Mill J., “On mappings of compact spaces into Cartesian spaces”, Topol. and Appl., 107:1/2 (2000), 13–24 | DOI | MR | Zbl
[43] Boltyanskii V. G., Ryshkov S. S., Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh i ikh primenenii k teorii priblizheniya funktsii”, UMN, 15:6 (1960), 125–132 | MR
[44] Boltyanskii V. G., “Otobrazheniya kompaktov v evklidovy prostranstva”, Izv. AN SSSR. Ser. mat., 23 (1959), 871–892 | Zbl
[45] Bogatyi S. A., “Pontrjagin's embedding theorem — $k$-regular embeddings, converse”, Mezhdunar. konf., posv. 90-letiyu so dnya rozhdeniya L. S. Pontryagina, Tez. dokl. Algebra, geometriya, topologiya (Moskva, 31 avg.–6 sent. 1998 g.), MGU, M., 1998, 59–61
[46] Bogatyi S. A., “O gipoteze Borsuka i prepyatstvii Ryshkova”, Mater. Mezhdunar. konf. po diskretnoi geometrii i ee prilozheniyam, posv. 70-letiyu prof. S. S. Ryshkova, Izd-vo Tsentra prikl. issled. mekh.-mat. fak. MGU, M., 2001, 20–22
[47] Bogatyi S. A., “$k$-Regulyarnye otobrazheniya v evklidovo prostranstvo i zadacha Borsuka–Boltyanskogo”, Mat. sb., 193:1 (2002), 73–82 | MR | Zbl
[48] Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh grafov v evklidovy prostranstva”, UMN, 18:4 (1963), 195–199 | MR | Zbl
[49] Chebyshev P. L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, 1857, Sochineniya, t. 2, AN SSSR, M., L., 1947, 152–236
[50] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[51] Haar A., “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78 (1918), 294–311 | DOI | MR
[52] Mairhuber J. C., “On Haar's theorem concerning Chebyshev approximation problems having unique solutions”, Proc. Amer. Math. Soc., 7:4 (1956), 609–615 | DOI | MR | Zbl
[53] Curtis P. C., Jr., “$n$-Parameter families and best approximation”, Pacif. J. Math., 9:4 (1959), 1013–1027 | MR | Zbl
[54] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR
[55] Schoenberg I. J., Yang C. T., “On the unicity of solutions of problems of best approximation”, Ann. Mat. Pura ed Appl., 54 (1961), 1–12 | DOI | MR | Zbl
[56] Overdeck J. M., “On the nonexistence of complex Haar systems”, Bull. Amer. Math. Soc., 77:5 (1971), 737–740 | DOI | MR | Zbl
[57] Dunham C. B., “Linear Chebyshev approximation”, Aequat. Math., 10:1 (1974), 40–45 | DOI | MR | Zbl
[58] Morozov E. N., “O chebyshevskikh podprostranstvakh vektornoznachnykh funktsii”, Mat. zametki, 19:3 (1976), 347–352 | MR | Zbl
[59] Shashkin Yu. A., “Interpolyatsionnye sistemy funktsii vtorogo roda i ikh topologiya”, Mat. zametki, 33:5 (1983), 723–733 | MR | Zbl
[60] Rubinshtein G. Sh., “Ob odnom metode issledovaniya vypuklykh mnozhestv”, DAN SSSR, 102:3 (1955), 451–454
[61] Cohen F. R., Handel D., “$k$-Regular embeddings of the plane”, Proc. Amer. Math. Soc., 72:1 (1978), 201–204 | DOI | MR | Zbl
[62] Handel D., “Some existence and non-existence theorems for $k$-regular maps”, Fund. Math., 109:3 (1980), 229–233 | MR | Zbl
[63] Shashkin Yu. A., “Interpolyatsionnye semeistva funktsii i vlozheniya mnozhestv v evklidovy i proektivnye prostranstva”, DAN SSSR, 174:5 (1967), 1030–1032 | Zbl
[64] Shashkin Yu. A., “Sistemy Korovkina v prostranstvakh nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 26 (1962), 495–512 | Zbl
[65] Tverberg H., “A generalization of Radon's theorem”, J. London Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl
[66] Tverberg H., “A generalization of Radon's theorem, II”, Bull. Austral. Math. Soc., 24 (1981), 321–325 | DOI | MR | Zbl
[67] Tverberg H., Vrećica S., “On generalizations of Radon's theorem and the ham sandwich theorem”, Europ. J. Comb., 14 (1993), 259–264 | DOI | MR | Zbl
[68] Sarkaria K. S., “Tverberg's theorem via number fields”, Israel J. Math., 79 (1992), 317–320 | DOI | MR | Zbl
[69] Bogatyi S. A., “Tsvetnaya teorema Tverberga”, Vestn. MGU. Matematika. Mekhanika, 1999, no. 3, 14–19 | MR | Zbl
[70] Rado R., “Theorems on the intersection of convex sets of points”, J. London Math. Soc., 27 (1952), 320–328 | DOI | MR | Zbl
[71] Bogatyi S. A., “Peresechenie lineinoi i vypukloi obolochek nekotorogo razbieniya zadannogo $(m+2)$-tochechnogo podmnozhestva $\mathbb{R}^m$”, Vestn. MGU. Matematika. Mekhanika, 1998, no. 6, 46–48 | MR | Zbl
[72] Brënsted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR
[73] Živaljević R. T., “The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles”, Israel J. Math., 111 (1999), 53–76 | DOI | MR
[74] Bogatyi S. A., Volovikov A. Yu., “Teorema Borsuka–Ulama dlya predstavlenii i $d$-transversali” (to appear)
[75] Bajmóczy E. G., Bárány I., “On a common generalization of Borsuk's and Radon's theorem”, Acta Math. Acad. Sci. Hung., 34 (1979), 347–350 | DOI | MR | Zbl
[76] Bárány I., Shlosman S. B., Szücs A., “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc., 23 (1981), 158–164 | DOI | MR | Zbl
[77] Volovikov A. Yu., “K topologicheskomu obobscheniyu teoremy Tverberga”, Mat. zametki, 59:3 (1996), 454–456 | MR | Zbl
[78] Bárány I., Larman D. G., “A colored version of Tverberg's theorem”, J. London Math. Soc., 45 (1992), 314–320 | DOI | MR | Zbl
[79] Živaljević R., Vrećica S., “The colored Tverberg's problem and complexes of injective functions”, J. Comb. Theory A., 61 (1992), 309–318 | DOI | MR
[80] Vrećica S. T., Živaljević R. T., “New cases of the colored Tverberg theorem”, Contemp. Math., 178, 1994, 325–334 | MR | Zbl
[81] Volovikov A. Yu., “Ob indekse $G$-prostranstv”, Mat. sb., 191:9 (2000), 3–22 | MR | Zbl
[82] Anderson L., Wenger R., “Oriented matroids and hyperplane transversals”, Adv. Math., 119 (1996), 117–125 | DOI | MR | Zbl
[83] Dolnikov V. L., “Obobschennye transversali semeistv mnozhestv v $\mathbb{R}^n$ i svyazi mezhdu teoremami Khelli i Borsuka”, DAN SSSR, 297:4 (1987), 777–780 | MR
[84] Tuncali H. M., Valov V., On finite-to-one maps, Preprint. Nipissing Univ., 2002 | MR | Zbl