Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 63-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. S. Ryshkov's solution of K. Borsuk's problem about $k$-regular embeddings is discussed. The results of Haar, Kolmogorov, and Rubinshtein are presented concerning the relation between $k$-regular mappings and interpolation, the number of zeros, and the low-dimensionality of the polyhedron of best Chebyshev approximations. The Tverberg transversal theorem is proved, and the place of the colored Tverberg theorem in the class of the problems discussed is highlighted. Many unsolved problems are formulated.
@article{TRSPY_2002_239_a3,
     author = {S. A. Bogatyi},
     title = {Borsuk's {Conjecture,} {Ryshkov} {Obstruction,} {Interpolation,} {Chebyshev} {Approximation,} {Transversal} {Tverberg's} {Theorem,} and {Problems}},
     journal = {Informatics and Automation},
     pages = {63--82},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems
JO  - Informatics and Automation
PY  - 2002
SP  - 63
EP  - 82
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/
LA  - ru
ID  - TRSPY_2002_239_a3
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems
%J Informatics and Automation
%D 2002
%P 63-82
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/
%G ru
%F TRSPY_2002_239_a3
S. A. Bogatyi. Borsuk's Conjecture, Ryshkov Obstruction, Interpolation, Chebyshev Approximation, Transversal Tverberg's Theorem, and Problems. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 63-82. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a3/

[1] Ryshkov S. S., “O $k$-regulyarnykh vlozheniyakh”, DAN SSSR, 127:2 (1959), 272–273 | Zbl

[2] Borsuk K., “On the $k$-independent subsets of the Euclidean space and of the Hilbert space”, Bull. Acad. Sci. Polon, 5:4 (1957), 351–356 | MR | Zbl

[3] Borsuk K., “Zamechaniya k vlozhimosti mnozhestv v evklidovy prostranstva”, Tr. III Vsesoyuz. mat. s'ezda, t. 4, M., 1959, 197–198 | MR

[4] Hurewicz W., “Dimensionstheorie und Cartesische Räume”, Koninkl. Akad. Wetensch. Proc. Sect. Sci., 34 (1931), 399–400 ; Collect. Works Witold Hurewicz, Amer. Math. Soc., Providence, RI, 1995 | Zbl

[5] Hurewicz W., “Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Räume”, Sitzungsber. Preuß. Akad. Wissensch., 4 (1933), 754–768; Collect. Works Witold Hurewicz, Amer. Math. Soc., Providence, RI, 1995

[6] McCullough D., Rubin L. R., “Some $m$-dimensional compacta admitting a dense set of imbeddings into $\mathbb R^{2m}$”, Fund. Math., 133 (1989), 237–245 | MR | Zbl

[7] Spież S., “On pairs of compacta with $\dim(X\times Y)\dim X+\dim Y$”, Fund. Math., 135 (1990), 213–222 | MR | Zbl

[8] Dranišnikov A. N., Repovš D., Ščepin E. V., “On intersections of compacta of complementary dimensions in Euclidean space”, Topol. and Appl., 38 (1991), 237–253 | DOI | MR | Zbl

[9] Dranishnikov A. N., West J., “On compacta that intersect unstably in Euclidean space”, Topol. and Appl., 43 (1992), 181–187 | DOI | MR | Zbl

[10] Dranišnikov A. N., Repovš D., Ščepin E. V., “On approximation and embedding problems for cohomological dimension”, Topol. and Appl., 55 (1994), 67–86 | DOI | MR | Zbl

[11] Dranishnikov A. N., Repovš D., Ščepin E. V., “Transversal intersection formula for compacta”, Topol. and Appl., 85 (1998), 93–117 | DOI | MR | Zbl

[12] Bogatyi S. A., “Geometriya otobrazhenii v evklidovo prostranstvo”, UMN, 53:5 (1998), 27–56 | MR | Zbl

[13] van Kampen E. R., “Komplexe in euklidischen Räumen”, Abhandl. Math. Sem. Hamburg Univ., 9 (1932), 72–78 | Zbl

[14] Flores A., “Über $n$-dimensionale Komplexe, die im $\mathbb{R}_{2n+1}$ absolut selbstverschlungen sind”, Ergegb. Math. Kolloq., 6 (1935), 4–7 | Zbl

[15] Makarychev Yu., “A short proof of Kuratowski's graph planarity criterion”, J. Graph Theory, 25 (1997), 129–131 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] Claytor S., “Peanian continua not imbeddable in a spherical surface”, Ann. Math., 38 (1937), 631–646 | DOI | MR | Zbl

[17] Sarkaria K. S., “Kuratowski complexes”, Topology, 30 (1991), 67–76 | DOI | MR | Zbl

[18] Wu W. T., “On the realization of complexes in a Euclidean space, I, II, III”, Sci. Sinica, 7 (1958), 251–297 ; 365–387; 8 (1959), 133–150 | MR | Zbl | MR

[19] Karimov U. H., Repovš D., “On embeddability of contractible $k$-dimensional compacta into $\mathbb{R}^{2k}$”, Topol. and Appl., 113 (2001), 81–85 | DOI | MR | Zbl

[20] Haefliger A., “Plongements differentiables dans le domaine stable”, Comment. Math. Helv., 37 (1962/63), 155–176 | DOI | MR | Zbl

[21] Weber C., “Plongements de polyedres dans le domaine metastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl

[22] Repovš D., Skopenkov A. B., “Embeddability and isotopy of polyhedra in Euclidean spaces”, Tr. MIAN, 212, 1996, 173–187 | MR

[23] Repovsh D., Skopenkov A. B., “Koltsa Borromeo i prepyatstviya k vlozhimosti”, Tr. MIAN, 225, 1999, 331–338 | MR | Zbl

[24] Gitler S., Immersion and embedding of manifolds, Preprint, 1971 | MR

[25] Mayer K. H., “Nonimmersion theorems for Grassmann manifolds”, Topol. and Appl., 96:2 (1999), 171–184 | DOI | MR | Zbl

[26] James I. M., The topology of Stiefel manifolds, LMS Lect. Note Ser., 24, Cambridge Univ. Press, Cambridge, 1976, 165 pp. | MR | Zbl

[27] Eilenberg S., “Remarque sur un théorème de W. Hurewicz”, Fund. Math., 24 (1935), 156–159 | Zbl

[28] Pasynkov B. A., “O razmernosti i geometrii otobrazhenii”, DAN SSSR, 221:3 (1975), 543–546 | MR | Zbl

[29] Schepin E. V., “Arifmetika teorii razmernosti”, UMN, 53:5 (1998), 115–212 | MR | Zbl

[30] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[31] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl

[32] Fadell E., Neuwirth L., “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | MR | Zbl

[33] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | MR

[34] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR

[35] Ostrand P., “Dimension of metric spaces and Hilbert's problem 13”, Bull. Amer. Math. Soc., 7 (1965), 619–622 | DOI | MR

[36] Sternfeld Y., “Hilbert's 13th problem and dimension”, Lect. Notes Math., 1376, 1989, 1–49 | MR | Zbl

[37] Conway J., Gordon C., “Knots and links in spatial graphs”, J. Graph Theory, 7 (1983), 445–453 | DOI | MR | Zbl

[38] Robertson N., Seymour P. D., Thomas R., “A survey of linkless embeddings”, Contemp. Math., 147, 1993, 125–136 | MR | Zbl

[39] Robertson N., Seymour P. D., Thomas R., “Sachs' linkless embedding conjecture”, J. Comb. Theory B., 64 (1995), 185–227 | DOI | MR | Zbl

[40] Seymour P., “Progress on the four-color theorem”, Proc. Intern. Congr. Math., v. 1 (Zürich, 1994), Birkhäuser, Basel, 1995, 183–195 | MR | Zbl

[41] Lovász L., Schrijver A., “A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs”, Proc. Amer. Math. Soc., 126:5 (1998), 1275–1285 | DOI | MR | Zbl

[42] Bogatyi S. A., Fedorchuk V. V., van Mill J., “On mappings of compact spaces into Cartesian spaces”, Topol. and Appl., 107:1/2 (2000), 13–24 | DOI | MR | Zbl

[43] Boltyanskii V. G., Ryshkov S. S., Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh i ikh primenenii k teorii priblizheniya funktsii”, UMN, 15:6 (1960), 125–132 | MR

[44] Boltyanskii V. G., “Otobrazheniya kompaktov v evklidovy prostranstva”, Izv. AN SSSR. Ser. mat., 23 (1959), 871–892 | Zbl

[45] Bogatyi S. A., “Pontrjagin's embedding theorem — $k$-regular embeddings, converse”, Mezhdunar. konf., posv. 90-letiyu so dnya rozhdeniya L. S. Pontryagina, Tez. dokl. Algebra, geometriya, topologiya (Moskva, 31 avg.–6 sent. 1998 g.), MGU, M., 1998, 59–61

[46] Bogatyi S. A., “O gipoteze Borsuka i prepyatstvii Ryshkova”, Mater. Mezhdunar. konf. po diskretnoi geometrii i ee prilozheniyam, posv. 70-letiyu prof. S. S. Ryshkova, Izd-vo Tsentra prikl. issled. mekh.-mat. fak. MGU, M., 2001, 20–22

[47] Bogatyi S. A., “$k$-Regulyarnye otobrazheniya v evklidovo prostranstvo i zadacha Borsuka–Boltyanskogo”, Mat. sb., 193:1 (2002), 73–82 | MR | Zbl

[48] Shashkin Yu. A., “O $k$-regulyarnykh vlozheniyakh grafov v evklidovy prostranstva”, UMN, 18:4 (1963), 195–199 | MR | Zbl

[49] Chebyshev P. L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, 1857, Sochineniya, t. 2, AN SSSR, M., L., 1947, 152–236

[50] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[51] Haar A., “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78 (1918), 294–311 | DOI | MR

[52] Mairhuber J. C., “On Haar's theorem concerning Chebyshev approximation problems having unique solutions”, Proc. Amer. Math. Soc., 7:4 (1956), 609–615 | DOI | MR | Zbl

[53] Curtis P. C., Jr., “$n$-Parameter families and best approximation”, Pacif. J. Math., 9:4 (1959), 1013–1027 | MR | Zbl

[54] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR

[55] Schoenberg I. J., Yang C. T., “On the unicity of solutions of problems of best approximation”, Ann. Mat. Pura ed Appl., 54 (1961), 1–12 | DOI | MR | Zbl

[56] Overdeck J. M., “On the nonexistence of complex Haar systems”, Bull. Amer. Math. Soc., 77:5 (1971), 737–740 | DOI | MR | Zbl

[57] Dunham C. B., “Linear Chebyshev approximation”, Aequat. Math., 10:1 (1974), 40–45 | DOI | MR | Zbl

[58] Morozov E. N., “O chebyshevskikh podprostranstvakh vektornoznachnykh funktsii”, Mat. zametki, 19:3 (1976), 347–352 | MR | Zbl

[59] Shashkin Yu. A., “Interpolyatsionnye sistemy funktsii vtorogo roda i ikh topologiya”, Mat. zametki, 33:5 (1983), 723–733 | MR | Zbl

[60] Rubinshtein G. Sh., “Ob odnom metode issledovaniya vypuklykh mnozhestv”, DAN SSSR, 102:3 (1955), 451–454

[61] Cohen F. R., Handel D., “$k$-Regular embeddings of the plane”, Proc. Amer. Math. Soc., 72:1 (1978), 201–204 | DOI | MR | Zbl

[62] Handel D., “Some existence and non-existence theorems for $k$-regular maps”, Fund. Math., 109:3 (1980), 229–233 | MR | Zbl

[63] Shashkin Yu. A., “Interpolyatsionnye semeistva funktsii i vlozheniya mnozhestv v evklidovy i proektivnye prostranstva”, DAN SSSR, 174:5 (1967), 1030–1032 | Zbl

[64] Shashkin Yu. A., “Sistemy Korovkina v prostranstvakh nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 26 (1962), 495–512 | Zbl

[65] Tverberg H., “A generalization of Radon's theorem”, J. London Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl

[66] Tverberg H., “A generalization of Radon's theorem, II”, Bull. Austral. Math. Soc., 24 (1981), 321–325 | DOI | MR | Zbl

[67] Tverberg H., Vrećica S., “On generalizations of Radon's theorem and the ham sandwich theorem”, Europ. J. Comb., 14 (1993), 259–264 | DOI | MR | Zbl

[68] Sarkaria K. S., “Tverberg's theorem via number fields”, Israel J. Math., 79 (1992), 317–320 | DOI | MR | Zbl

[69] Bogatyi S. A., “Tsvetnaya teorema Tverberga”, Vestn. MGU. Matematika. Mekhanika, 1999, no. 3, 14–19 | MR | Zbl

[70] Rado R., “Theorems on the intersection of convex sets of points”, J. London Math. Soc., 27 (1952), 320–328 | DOI | MR | Zbl

[71] Bogatyi S. A., “Peresechenie lineinoi i vypukloi obolochek nekotorogo razbieniya zadannogo $(m+2)$-tochechnogo podmnozhestva $\mathbb{R}^m$”, Vestn. MGU. Matematika. Mekhanika, 1998, no. 6, 46–48 | MR | Zbl

[72] Brënsted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR

[73] Živaljević R. T., “The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles”, Israel J. Math., 111 (1999), 53–76 | DOI | MR

[74] Bogatyi S. A., Volovikov A. Yu., “Teorema Borsuka–Ulama dlya predstavlenii i $d$-transversali” (to appear)

[75] Bajmóczy E. G., Bárány I., “On a common generalization of Borsuk's and Radon's theorem”, Acta Math. Acad. Sci. Hung., 34 (1979), 347–350 | DOI | MR | Zbl

[76] Bárány I., Shlosman S. B., Szücs A., “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc., 23 (1981), 158–164 | DOI | MR | Zbl

[77] Volovikov A. Yu., “K topologicheskomu obobscheniyu teoremy Tverberga”, Mat. zametki, 59:3 (1996), 454–456 | MR | Zbl

[78] Bárány I., Larman D. G., “A colored version of Tverberg's theorem”, J. London Math. Soc., 45 (1992), 314–320 | DOI | MR | Zbl

[79] Živaljević R., Vrećica S., “The colored Tverberg's problem and complexes of injective functions”, J. Comb. Theory A., 61 (1992), 309–318 | DOI | MR

[80] Vrećica S. T., Živaljević R. T., “New cases of the colored Tverberg theorem”, Contemp. Math., 178, 1994, 325–334 | MR | Zbl

[81] Volovikov A. Yu., “Ob indekse $G$-prostranstv”, Mat. sb., 191:9 (2000), 3–22 | MR | Zbl

[82] Anderson L., Wenger R., “Oriented matroids and hyperplane transversals”, Adv. Math., 119 (1996), 117–125 | DOI | MR | Zbl

[83] Dolnikov V. L., “Obobschennye transversali semeistv mnozhestv v $\mathbb{R}^n$ i svyazi mezhdu teoremami Khelli i Borsuka”, DAN SSSR, 297:4 (1987), 777–780 | MR

[84] Tuncali H. M., Valov V., On finite-to-one maps, Preprint. Nipissing Univ., 2002 | MR | Zbl