The Number of Lattice Points in a~Spherical Layer
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

New dependences between lattices and their duals are established. In Euclidean spaces of large dimensions, an exponential lower bound for the number of points of a lattice $L$ that lie in a spherical layer with close inner and outer radii is obtained. The radii are reciprocal to the packing radius of the dual lattice $L'$.
@article{TRSPY_2002_239_a22,
     author = {V. A. Yudin},
     title = {The {Number} of {Lattice} {Points} in {a~Spherical} {Layer}},
     journal = {Informatics and Automation},
     pages = {332--335},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a22/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - The Number of Lattice Points in a~Spherical Layer
JO  - Informatics and Automation
PY  - 2002
SP  - 332
EP  - 335
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a22/
LA  - ru
ID  - TRSPY_2002_239_a22
ER  - 
%0 Journal Article
%A V. A. Yudin
%T The Number of Lattice Points in a~Spherical Layer
%J Informatics and Automation
%D 2002
%P 332-335
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a22/
%G ru
%F TRSPY_2002_239_a22
V. A. Yudin. The Number of Lattice Points in a~Spherical Layer. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a22/

[1] Kassels Dzh. V., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[3] Yudin V. A., “Dve ekstremalnye zadachi dlya trigonometricheskikh polinomov”, Mat. sb., 187:11 (1996), 145–160 | MR | Zbl

[4] M. B. Sevryuk, V. B. Fillipov (red.), Zadachi Arnolda, Fazis, M., 2000 | MR

[5] Vatson G., Teoriya besselevykh funktsii. Ch. 1, Izd-vo inostr. lit., M., 1949

[6] Yudin V. A., “Raspolozhenie tochek na tore i ekstremalnye svoistva polinomov”, Tr. MIAN, 219, 1997, 453–463 | MR | Zbl