On the Thickness of $\langle p,q\rangle$ Point Systems
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 318-322

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the $\langle p,q\rangle$ thickness of point systems and a lower bound for the maximum of $\langle p,q\rangle$ thicknesses in $d$-spaces of constant curvature are given.
@article{TRSPY_2002_239_a20,
     author = {J. Horv\'ath},
     title = {On the {Thickness} of $\langle p,q\rangle$ {Point} {Systems}},
     journal = {Informatics and Automation},
     pages = {318--322},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a20/}
}
TY  - JOUR
AU  - J. Horváth
TI  - On the Thickness of $\langle p,q\rangle$ Point Systems
JO  - Informatics and Automation
PY  - 2002
SP  - 318
EP  - 322
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a20/
LA  - en
ID  - TRSPY_2002_239_a20
ER  - 
%0 Journal Article
%A J. Horváth
%T On the Thickness of $\langle p,q\rangle$ Point Systems
%J Informatics and Automation
%D 2002
%P 318-322
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a20/
%G en
%F TRSPY_2002_239_a20
J. Horváth. On the Thickness of $\langle p,q\rangle$ Point Systems. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 318-322. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a20/