Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_239_a20, author = {J. Horv\'ath}, title = {On the {Thickness} of $\langle p,q\rangle$ {Point} {Systems}}, journal = {Informatics and Automation}, pages = {318--322}, publisher = {mathdoc}, volume = {239}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a20/} }
J. Horváth. On the Thickness of $\langle p,q\rangle$ Point Systems. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 318-322. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a20/
[1] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62
[2] Fejes Tóth L., “Close packing and loose covering with balls”, Publ. Math. Debrecen, 23 (1976), 323–326 | MR
[3] Horváth J., “Über die Enge der gitterförmigen $k$-fachen Packung, die Lockerheit der gitterförmigen $k$-fachen Überdeckung und die $k$-Enge der gitterförmigen Punktmenge”, Beitr. Alg. und Geom., 16 (1983), 139–172 | MR | Zbl
[4] Horváth J., “$\langle p,q\rangle$-Punktsysteme in der Minkowskischen Ebene”, Beitr. Alg. und Geom., 23 (1986), 43–61 | MR | Zbl
[5] Khorvat E., Nekotorye problemy mnogomernoi diskretnoi geometrii, Dis. $\dots$ dokt. fiz.-mat. nauk, MIAN SSSR, M., 1986, 240 pp.
[6] Temesvári H.Á., “Über die $\langle p,q\rangle$-Systeme in der Euklidischen Ebene”, Beitr. Alg. und Geom., 28 (1989), 125–138 | MR | Zbl
[7] Temesvári H.Á., Végh A., “Über die Dicke von $\langle p,q\rangle$-Punktsystemen in der Euklidischen Ebene”, Ann. Univ. Sci. Budapest. Sect. Math., 43 (2000), 79–100 | MR | Zbl
[8] Ryshkov S. S., “Poliedr $\mu(m)$ i nekotorye ekstremalnye zadachi geometrii chisel”, DAN SSSR, 194:3 (1970), 514–517 | Zbl
[9] Ryshkov S. S., “Plotnost $(r,R)$-sistemy”, Mat. zametki, 16:3 (1974), 447–454 | MR | Zbl