Sheaf Cohomology and Dimension of Ordered Sets
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 289-317

Voir la notice de l'article provenant de la source Math-Net.Ru

The general concept of flabbiness and flabby dimension in abelian categories and, as particular cases, flabby and soft dimensions of quasiordered sets are considered. The sheaf theory technique is developed to the level that allows one to obtain the basic theorem of the cohomological theory of dimension, including flabby and Bredon's dimensions.
@article{TRSPY_2002_239_a19,
     author = {E. E. Skurikhin},
     title = {Sheaf {Cohomology} and {Dimension} of {Ordered} {Sets}},
     journal = {Informatics and Automation},
     pages = {289--317},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a19/}
}
TY  - JOUR
AU  - E. E. Skurikhin
TI  - Sheaf Cohomology and Dimension of Ordered Sets
JO  - Informatics and Automation
PY  - 2002
SP  - 289
EP  - 317
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a19/
LA  - ru
ID  - TRSPY_2002_239_a19
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%T Sheaf Cohomology and Dimension of Ordered Sets
%J Informatics and Automation
%D 2002
%P 289-317
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a19/
%G ru
%F TRSPY_2002_239_a19
E. E. Skurikhin. Sheaf Cohomology and Dimension of Ordered Sets. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 289-317. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a19/