The Graph of a~Geometric Class of Space Groups
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 284-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some comments on the subgroup relations of all space groups within a geometric class are given. A graph is defined that encodes the essential inclusions of these groups in one another. In a three-dimensional space, such a construction answers, amongst others, the question when one space group occurs as a maximal subgroup of another in the same geometric class. This information can also be obtained in higher dimensions in CARAT, which provides an environment for constructing, counting, and recognizing space groups up to dimension six.
@article{TRSPY_2002_239_a18,
     author = {W. Plesken and O. Heidb\"uchel},
     title = {The {Graph} of {a~Geometric} {Class} of {Space} {Groups}},
     journal = {Informatics and Automation},
     pages = {284--288},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a18/}
}
TY  - JOUR
AU  - W. Plesken
AU  - O. Heidbüchel
TI  - The Graph of a~Geometric Class of Space Groups
JO  - Informatics and Automation
PY  - 2002
SP  - 284
EP  - 288
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a18/
LA  - en
ID  - TRSPY_2002_239_a18
ER  - 
%0 Journal Article
%A W. Plesken
%A O. Heidbüchel
%T The Graph of a~Geometric Class of Space Groups
%J Informatics and Automation
%D 2002
%P 284-288
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a18/
%G en
%F TRSPY_2002_239_a18
W. Plesken; O. Heidbüchel. The Graph of a~Geometric Class of Space Groups. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 284-288. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a18/

[1] Crystallographic algorithms and tables. Available at, http://wwwb.math. rwth-aachen.de/carat/

[2] Opgenorth J., Plesken W., Schulz T., “Crystallographic algorithms and tables”, Acta Cryst. A., 54 (1998), 517–531 | DOI | MR | Zbl

[3] Plesken W., Schulz T., “Counting crystallographic groups in low dimensions”, Exp. Math., 9:3, 407–411 | MR | Zbl

[4] Ryshkov S. S., “O maksimalnykh konechnykh gruppakh tselochislennykh $(n\times n)$-matrits”, DAN SSSR, 204:3 (1972), 561–564 | MR | Zbl

[5] Ryshkov S. S., “Maksimalnye konechnye gruppy tselochislennykh $(n\times n)$-matrits i polnye gruppy tselochislennykh avtomorfizmov polozhitelnykh kvadratichnykh form (tipy Brave)”, Tr. MIAN, 128, 1972, 183–211 | Zbl

[6] Ryshkov S. S., Lomakina Z. D., “Dokazatelstvo teoremy o maksimalnykh konechnykh gruppakh tselochislennykh $(5\times 5)$-matrits”, Tr. MIAN, 152, 1980, 204–215 | MR | Zbl