Generalized Barycentric Subdivision of a Triangle
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 275-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem naturally extending the theorem of Barany, Beardon, and Carne about the density of the classes of similar triangles obtained from a given triangle by applying an infinite series of barycentric subdivisions is proved.
@article{TRSPY_2002_239_a17,
     author = {A. A. Ordin},
     title = {Generalized {Barycentric} {Subdivision} of a {Triangle}},
     journal = {Informatics and Automation},
     pages = {275--283},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a17/}
}
TY  - JOUR
AU  - A. A. Ordin
TI  - Generalized Barycentric Subdivision of a Triangle
JO  - Informatics and Automation
PY  - 2002
SP  - 275
EP  - 283
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a17/
LA  - ru
ID  - TRSPY_2002_239_a17
ER  - 
%0 Journal Article
%A A. A. Ordin
%T Generalized Barycentric Subdivision of a Triangle
%J Informatics and Automation
%D 2002
%P 275-283
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a17/
%G ru
%F TRSPY_2002_239_a17
A. A. Ordin. Generalized Barycentric Subdivision of a Triangle. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 275-283. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a17/

[1] Barany I., Beardon A. F., Carne T. K., “Barycentric subdivision of triangles and semigroups of Möbius maps”, Mathematika, 43 (1996), 165–171 | DOI | MR | Zbl

[2] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR