To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 268-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to strengthening a result of Spohn based on the analysis of best approximations is suggested. Let $\alpha _1,\dots ,\alpha _m$ be real numbers. Let $c_m$ denote the least upper bound of all constants $\sigma $ for which the inequality $\max _{j=1,\dots ,m}\|p\alpha _j\| (\sigma p)^{-1/m}$ has infinitely many positive integer solutions $p$; here, $\|\cdot \|$ is the distance to the nearest integer. Lower bounds for $c_m$ that hold for all $m$ are studied.
@article{TRSPY_2002_239_a16,
     author = {N. G. Moshchevitin},
     title = {To the {Blichfeldt--Mullender--Spohn} {Theorem} on {Simultaneous} {Approximation}},
     journal = {Informatics and Automation},
     pages = {268--274},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a16/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation
JO  - Informatics and Automation
PY  - 2002
SP  - 268
EP  - 274
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a16/
LA  - ru
ID  - TRSPY_2002_239_a16
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation
%J Informatics and Automation
%D 2002
%P 268-274
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a16/
%G ru
%F TRSPY_2002_239_a16
N. G. Moshchevitin. To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 268-274. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a16/

[1] Hurwitz A., “Über die angenäherte Datstellung der Irrationalzahlen durch rationale Brüche”, Math. Ann., 39 (1891), 279–284 | DOI | MR

[2] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | DOI | MR | Zbl

[3] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | DOI | MR | Zbl

[4] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896

[5] Blichfeldt H., “A new principle in the geometry of numbers, with some applications”, Trans. Amer. Math. Soc., 15 (1914), 227–235 | DOI | MR | Zbl

[6] Mullender P., “Lattice points in non-convex regions, I”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 51 (1948), 874–884 | MR | Zbl

[7] Mordell L., “Lattice points in some $n$-dimensional non-convex regions, I, II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781, 782–792 | MR | Zbl

[8] Koksma J., Meulenbeld B., “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles, I, II, III, IV”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 45 (1942), 256–262, 354–359, 471–478, 578–584 | MR | Zbl

[9] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | DOI | MR | Zbl

[10] Nowak W. G., “A remark concerning the $s$-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl

[11] Lagarias J. S., “Best simultaneous Diophantine approximation, I”, Trans. Amer. Math. Soc., 272:2 (1982), 545–554 | DOI | MR | Zbl

[12] Moschevitin N. G., “Nailuchshie sovmestnye priblizheniya: normy, signatury i asimptoticheskie napravleniya”, Mat. zametki, 67:5 (2000), 730–737 | MR | Zbl

[13] Furtwängler P., “Über die simultane Approximation von Irrationalzahlen, I, II”, Math. Ann., 96 (1927), 169–175 ; 99 (1928), 71–83 | DOI | MR | DOI | MR | Zbl

[14] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl

[15] Skubenko B. F., “K sovmestnym priblizheniyam algebraicheskikh irratsionalnostei”, Zap. nauch. sem. LOMI, 116, 1982, 142–154 | MR | Zbl

[16] Szekeres G., “The $n$-dimensional approximation constant”, Bull. Austral. Math. Soc., 29 (1984), 119–125 | DOI | MR | Zbl

[17] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A., 24 (1977), 266–285 | DOI | MR | Zbl

[18] Nowak W. G., “Diophantine approximations in $\mathbb{R}^s$. On a method of Mordell and Armitage”, Algebraic number theory and Diophantine analysis, Proc. Intern. Conf. (Graz, Austria, Aug.–Sept. 1998), W. de Gruyter, Berlin, New York, 2000, 339–349 | MR | Zbl

[19] Gruber P. M., Lekkerkerker C. G., Geometry of numbers, North-Holland, Amsterdam, 1987 | MR | Zbl