Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_239_a13, author = {M. A. Korolev}, title = {The {Argument} of the {Riemann} {Zeta} {Function} on the {Critical} {Line}}, journal = {Informatics and Automation}, pages = {215--238}, publisher = {mathdoc}, volume = {239}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a13/} }
M. A. Korolev. The Argument of the Riemann Zeta Function on the Critical Line. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a13/
[1] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvidenskab. B., 48:5 (1946), 89–155 | MR | Zbl
[2] Titchmarsh E. C., “The zeros of the Riemann zeta-function”, Proc. Roy. Soc. London A., 151 (1935), 234–255 | DOI | Zbl
[3] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. lit., M., 1953
[4] Ghosh A., “On Riemann's zeta-function—sign changes of $S(T)$”, Recent progress in analytic number theory, v. 1, Acad. Press, New York, 1981, 25–46 | MR
[5] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. mat., 60:5 (1996), 27–56 | MR | Zbl