Quadratic and Rigidity Mappings
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 195-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

As opposed to the case of functions, the quadratic mappings from $\mathbb R^l$ to$\mathcal R^r$ for not too small $l$ and $r$ are studied immeasurably worse than the linear ones. Likewise, little is known about the class of quadratic mappings whose coordinate functions are the squares of certain pairwise distances between points thrown into a Euclidean space (this class is important for the Euclidean geometry). Such mappings are called rigidity mappings in this paper. The geometric properties of rigidity mappings are discussed. The tangent cone of a mapping and the notions of stability and rigidity order of a point under a mapping, which arise in the theory of hinged mechanisms, are studied from general positions.
@article{TRSPY_2002_239_a12,
     author = {M. D. Kovalev},
     title = {Quadratic and {Rigidity} {Mappings}},
     journal = {Informatics and Automation},
     pages = {195--214},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a12/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - Quadratic and Rigidity Mappings
JO  - Informatics and Automation
PY  - 2002
SP  - 195
EP  - 214
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a12/
LA  - ru
ID  - TRSPY_2002_239_a12
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T Quadratic and Rigidity Mappings
%J Informatics and Automation
%D 2002
%P 195-214
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a12/
%G ru
%F TRSPY_2002_239_a12
M. D. Kovalev. Quadratic and Rigidity Mappings. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 195-214. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a12/

[1] Dines L. L., “On the mapping of $n$ quadratic forms”, Bull. Amer. Math. Soc., 48:6 (1942), 467–471 | DOI | MR | Zbl

[2] Agrachev A. A., “Topologiya kvadratichnykh otobrazhenii i gessiany gladkikh otobrazhenii”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 26, VINITI, M., 1988, 85–124 | MR

[3] Agrachev A. A., Gamkrelidze R. V., “Kvadratichnye otobrazheniya i gladkie vektor-funktsii: eilerovy kharakteristiki mnozhestv urovnya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 35, VINITI, M., 1989, 179–239 | MR

[4] Izmailov A. F., Tretyakov A. A., “K probleme obratimosti kvadratichnykh otobrazhenii”, Vestn. Ros. un-ta druzhby narodov. Matematika, 1997/98, no. 4,5(1), 84–89 | Zbl

[5] Arutyunov A. V., “Nekotorye svoistva kvadratichnykh otobrazhenii”, Vestn. MGU. Vychisl. matematika i kibernetika, 1999, no. 2, 30–32 | MR | Zbl

[6] Kempe A. B., “On a general method of describing plane curves of the $n^{\text{th}}$ degree by linkwork”, Proc. London Math. Soc., 7 (1876), 213–216 | DOI

[7] Kapovich M., Millson J. J., Universality theorems for configuration spaces of planar linkages, , 1998, 30 Mar. 45 p arXiv: /abs/math.AG/9803150 | MR

[8] King H. C., Planar linkages and algebraic sets, , 22 pp. arXiv: /math.AG/9807023 | MR

[9] Alexandrov V., “Sufficient conditions for the extendibility of an $n$-th order flex of polyhedra”, Beitr. Alg. und Geom., 39:2 (1998), 367–378 | MR | Zbl

[10] Alexandrov V., “Implicit function theorem for systems of polynomial equations with vanishing Jacobian and its application to flexible polyhedra and frameworks”, Monatsh. Math., 132 (2001), 269–288 | DOI | MR | Zbl

[11] Kovalev M. D., “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN. Ser. mat., 58:1 (1994), 45–70 | Zbl

[12] Kovalev M. D., “O vosstanovimosti sharnirnikov po vnutrennim napryazheniyam”, Izv. RAN. Ser. mat., 61:4 (1997), 37–66 | MR | Zbl

[13] White N., Whiteley W., “The algebraic geometry of stresses in frameworks”, SIAM J. Alg. Discr. Meth., 4:4 (1983), 481–511 | DOI | MR | Zbl

[14] Crapo H., Whiteley W., “Statics of frameworks and motions of panel structures, a projective geometric introduction”, Structural Topology, 1982, no. 6, 43–82 | MR

[15] White N., Whiteley W., “The algebraic geometry of motions of bar-and-body frameworks”, SIAM J. Alg. Discr. Meth., 8:1 (1987), 1–32 | DOI | MR | Zbl

[16] Penne R., “Isostatic bar and joint frameworks in the plane with irreducible pure conditions”, Discr. Appl. Math., 55 (1994), 37–57 | DOI | MR | Zbl

[17] Kovalev M. D., “Ustoichivost sharnirnikov, sharnirnykh ustroistv i skhem”, Topologiya i geometriya, Tr. Mezhdunar. konf., posv. 90-letiyu so dnya rozhdeniya L. S. Pontryagina, Itogi nauki i tekhniki. Sovrem. matematika i ee prilozh., 7, VINITI, M., 1999, 65–86

[18] Connelly R., Servatius H., “Higher order rigidity — what is the proper definition?”, Discr. Comput. Geom., 11:2 (1994), 193–200 | DOI | MR | Zbl

[19] Sabitov I. Kh., “O svyazyakh mezhdu beskonechno malymi izgibaniyami razlichnykh poryadkov”, Ukr. geom. sb., 1992, no. 35, 118–124 | MR

[20] Artin M., “Algebraic approximation of structures over complete local rings”, Publ. Math. IHES, 1969, no. 36, 23–58 | MR | Zbl

[21] Artin M., “On the solutions of analytic equations”, Invent. Math., 5:4 (1968), 277–291 | DOI | MR | Zbl

[22] Sabitov I. Kh., “Lokalnaya teoriya izgibaniya poverkhnostei”, Geometriya – 3, Itogi nauki i tekhniki. Sovremennye problemy matematiki.Fundamentalnye napravleniya, 48, VINITI, M., 1989, 196–270 | MR

[23] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 2, Nauka, M., 1970