On Some Lattices Connected with a~Finite Group
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 179-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb C[G]$ be the group ring of a finite group $G$, $\pi _r$ be a minimal central idempotent of this group ring, and $W_r=\mathbb C[G]\pi _r$ be the corresponding minimal central two-sided ideal. The ring $\mathbb C[G]$ contains the group ring $\mathbb Z[G]$, whereby the ideal $W_r$ contains a subring $A_r=\mathbb Z[G]\pi _r$. This article concerns the geometrical properties of location of the subring $A_r$ in the ideal $W_r$. The following facts are proved: (1) generally, the subgroup $A_r$ is not discrete in $W_r$; (2) if the associated irreducible character $\chi _r$ has integer values, then $A_r$ is a lattice in $W_r$; (3) if the irreducible character $\chi _r$ is real, the converse is true as well; (4) for a symmetrization $W_r^{\bullet }$ with respect to an action of a certain Galois group, the subgroup $\mathbb Z[G]\pi _r^{\bullet }$ is a lattice in $W_r^{\bullet}$.
@article{TRSPY_2002_239_a11,
     author = {A. V. Zarelua},
     title = {On {Some} {Lattices} {Connected} with {a~Finite} {Group}},
     journal = {Informatics and Automation},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a11/}
}
TY  - JOUR
AU  - A. V. Zarelua
TI  - On Some Lattices Connected with a~Finite Group
JO  - Informatics and Automation
PY  - 2002
SP  - 179
EP  - 194
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a11/
LA  - ru
ID  - TRSPY_2002_239_a11
ER  - 
%0 Journal Article
%A A. V. Zarelua
%T On Some Lattices Connected with a~Finite Group
%J Informatics and Automation
%D 2002
%P 179-194
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a11/
%G ru
%F TRSPY_2002_239_a11
A. V. Zarelua. On Some Lattices Connected with a~Finite Group. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 179-194. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a11/

[1] Gruber P. M., Lekkerkerker C. G., Geometry of numbers, North-Holland Math. Library, 37, North-Holland, Amsterdam, 1987 | MR | Zbl

[2] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[3] Isaacs I. M., Character theory of finite groups, Acad. Press, New York, San Francisco, London, 1976 | MR | Zbl

[4] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[5] Serr Zh.-P., Lineinye predstavleniya konechnykh grupp, Mir, M., 1970 | Zbl

[6] Zarelua A., “Homotopical properties of sheaf resolutions”, Third National Conference on Topology (Italian) (Trieste, 1986), Rend. Circ. Mat. Palermo (2), Suppl., 1988, no. 18, 141–193 | MR | Zbl