An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in~$\mathbb Z^n$
Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 170-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

G. Voronoi (1908–09) introduced two important reduction methods for positive quadratic forms, the reduction with perfect forms and the reduction with $L$-type domains. A form is perfect if it can be reconstructed from all representations of its arithmetic minimum. Two forms have the same $L$-type if the Delaunay tilings of their lattices are affinely equivalent. Delaunay (1937–38) asked about possible relative volumes of lattice Delaunay simplices. We construct an infinite series of Delaunay simplices of relative volume $n-3$, the best known up to now. This series gives rise to an infinite series of perfect forms with remarkable properties (e.g. $\tau_{5}\sim D_{5}\sim\phi _{2}^{5}$, $\tau _{6}\sim E_{6}^{\ast }$, and $\tau _{7}\sim \varphi _{15}^{7}$); for all $n$, the domain of $\tau _{n}$ is adjacent to the domain of $D_{n}$, the $2$nd perfect form. The perfect form $\tau _{n}$ is a direct $n$-dimensional generalization of the Korkine and Zolotareff $3$rd perfect form $\phi _{2}^{5}$ in five variables. We prove that $\tau _{n}$ is equivalent to the Anzin (1991) form $h_{n}$.
@article{TRSPY_2002_239_a10,
     author = {R. M. Erdahl and K. A. Rybnikov},
     title = {An {Infinite} {Series} of {Perfect} {Quadratic} {Forms} and {Big} {Delaunay} {Simplices} in~$\mathbb Z^n$},
     journal = {Informatics and Automation},
     pages = {170--178},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a10/}
}
TY  - JOUR
AU  - R. M. Erdahl
AU  - K. A. Rybnikov
TI  - An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in~$\mathbb Z^n$
JO  - Informatics and Automation
PY  - 2002
SP  - 170
EP  - 178
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a10/
LA  - en
ID  - TRSPY_2002_239_a10
ER  - 
%0 Journal Article
%A R. M. Erdahl
%A K. A. Rybnikov
%T An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in~$\mathbb Z^n$
%J Informatics and Automation
%D 2002
%P 170-178
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a10/
%G en
%F TRSPY_2002_239_a10
R. M. Erdahl; K. A. Rybnikov. An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in~$\mathbb Z^n$. Informatics and Automation, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 170-178. http://geodesic.mathdoc.fr/item/TRSPY_2002_239_a10/

[1] Anzin M. M., “O variatsiyakh polozhitelnykh kvadratichnykh form (s prilozheniem k issledovaniyu sovershennykh form)”, Tr. MIAN, 196, 1991, 11–26 | MR | Zbl

[2] Baranovskii E. P., “Razbienie evklidovykh prostranstv na $L$-mnogogranniki nekotorykh sovershennykh reshetok”, Tr. MIAN, 196, 1991, 27–46 | MR | Zbl

[3] Barnes E. S., “The complete enumeration of extreme senary forms”, Philos. Trans. Roy. Soc. London A., 249 (1957), 461–506 | DOI | MR | Zbl

[4] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, 3rd ed., Grundl. Math. Wissensch., 290, Springer, New York, 1999 | MR | Zbl

[5] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62 ; 1938, no. 4, 102–164

[6] Delone B. N., Ryshkov S. S., “Reshenie zadachi o naimenee plotnom reshetchatom pokrytii chetyrekhmernogo prostranstva ravnymi sharami”, DAN SSSR, 152:3 (1963), 523–524 | MR | Zbl

[7] Delone B. N., Dolbilin N. P., Ryshkov S. S., Shtogrin M. I., “Novoe postroenie teorii reshetchatykh pokrytii $n$-mernogo prostranstva ravnymi sharami”, Izv. AN SSSR. Ser. mat., 34 (1970), 289–298 | MR | Zbl

[8] Coxeter H. S. M., “Extreme forms”, Canad. J. Math., 3 (1951), 391–441 | MR | Zbl

[9] Kaleidoscopes: Selected writings of H. S. M. Coxeter, CMS Ser. Monogr. and Adv. Texts, J. Wiley $\$ Sons, New York, 1995 | MR

[10] Deza M., Grishukhin V. P., Laurent M., “Extreme hypermetrics and $L$-polytopes”, Sets, graphs and numbers (Budapest, 1991), Colloq. Math. Soc. J. Bolyai, 60, North-Holland, Amsterdam, 1992, 157–209 | MR | Zbl

[11] Deza M. M., Laurent M., Geometry of cuts and metrics, Algorithms and Combinatorics, 15, Springer-Verl., Berlin, 1997 | MR | Zbl

[12] Erdahl R., Rybnikov K., Voronoi–Dickson hypothesis on perfect forms and $L$-types, arXiv: /abs/math.NT/0112097

[13] Haase C., Ziegler G., “On the maximal width of empty lattice simplices”, Europ. J. Comb., 21:1 (2000), 111–119 | DOI | MR | Zbl

[14] Ryshkov S. S., “O sovershennoi forme $A_n^k$: suschestvovanie reshetok s neosnovnym simpleksom razbieniya; suschestvovanie sovershennykh form, ne privodimykh po Minkovskomu k forme s odinakovymi diagonalnymi koeffitsientami”, Zap. nauch. seminarov LOMI, 33, 1973, 65–71 | Zbl

[15] Ryshkov S. S., Erdal R. M., “Dualnye sistemy tselochislennykh vektorov i ikh primeneniya”, DAN SSSR, 314:1 (1990), 123–128 | MR | Zbl

[16] Ryshkov S. S., Erdal R. M., “Dualnye sistemy tselochislennykh vektorov (obschie voprosy, prilozheniya k geometrii polozhitelnykh kvadratichnykh form)”, Mat. sb., 182:12 (1991), 1796–1812 | MR

[17] Ryshkov S. S., Erdal R. M., “Dualnye sistemy tselochislennykh vektorov i ikh primeneniya v teorii $(0,1)$-matrits”, Tr. MIAN, 196, 1991, 161–173 | MR | Zbl

[18] Ryshkov S. S., Baranovskii E. P., “$C$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii)”, Tr. MIAN, 137, Nauka, M., 1976 | MR

[19] Ryshkov S. S., Baranovskii E. P., “The repartitioning complexes in $n$-dimensional lattices (with full description for $n\leqslant 6$)”, Voronoi's impact on modern science, Book 2, Inst. Math., Kyiv, 1998, 115–124 | Zbl

[20] Stacey K. C., The enumeration of perfect quadratic forms in seven variables, Ph.D. Diss., Oxford, 1973; J. London Math. Soc. Ser. 2, 10 (1975), 97–104 | DOI | MR | Zbl

[21] Voronoi G. F., “Nouvelles applications des paramèters continus à la théorie des formes quadratiques. Premiere mémoire”, J. Reine und Angew. Math., 133 (1908), 97–178 ; Deuxième mémoire, 134 (1908), 198–287 ; 136 (1909), 67–178 | Zbl | Zbl | Zbl

[22] Voronoi G. F., Sobranie sochinenii, t. 2, AN USSR, Kiev, 1952, Vvedenie i zamechaniya B. N. Delone