On the Deligne--Simpson Problem
Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 158-195

Voir la notice de l'article provenant de la source Math-Net.Ru

The Deligne–Simpson problem is formulated as follows: \textit{give necessary and sufficient conditions for the choice of the conjugacy classes $C_j\subset SL(n,\mathbb C)$ or $c_j\subset sl(n,\mathbb C)$ so that there exist irreducible $(p+1)$-tuples of matrices $M_j\in C_j$ or $A_j\in c_j$ satisfying the equality $M_1\ldots M_{p+1}=I$ or $A_1+\ldots +A_{p+1}=0$}. We solve the problem for generic eigenvalues with the exception of the case of matrices $M_j$ when the greatest common divisor of the numbers $\Sigma _{j,l}(\sigma )$ of Jordan blocks of a given matrix $M_j$, with a given eigenvalue $\sigma$ and of a given size $l$ (taken over all $j$$\sigma$$l$), is $>1$. Generic eigenvalues are defined by explicit algebraic inequalities. For such eigenvalues, there exist no reducible $(p+1)$-tuples. The matrices $M_j$ and $A_j$ are interpreted as monodromy operators of regular linear systems and as matrices–residua of Fuchsian ones on Riemann's sphere.
@article{TRSPY_2002_238_a9,
     author = {V. P. Kostov},
     title = {On the {Deligne--Simpson} {Problem}},
     journal = {Informatics and Automation},
     pages = {158--195},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a9/}
}
TY  - JOUR
AU  - V. P. Kostov
TI  - On the Deligne--Simpson Problem
JO  - Informatics and Automation
PY  - 2002
SP  - 158
EP  - 195
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a9/
LA  - en
ID  - TRSPY_2002_238_a9
ER  - 
%0 Journal Article
%A V. P. Kostov
%T On the Deligne--Simpson Problem
%J Informatics and Automation
%D 2002
%P 158-195
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a9/
%G en
%F TRSPY_2002_238_a9
V. P. Kostov. On the Deligne--Simpson Problem. Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 158-195. http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a9/