Thom--Sebastiani Construction and Monodromy of Polynomials
Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 106-123

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the monodromy representation of a sum $f+g$ of two polynomials $f$ and $g$ in disjoint sets of variables in terms of the monodromy representations of $f$ and $g$. Complete results are obtained under the assumption that the bifurcation set of $g$ is a one-point set.
@article{TRSPY_2002_238_a6,
     author = {A. Dimca and A. N\'emethi},
     title = {Thom--Sebastiani {Construction} and {Monodromy} of {Polynomials}},
     journal = {Informatics and Automation},
     pages = {106--123},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a6/}
}
TY  - JOUR
AU  - A. Dimca
AU  - A. Némethi
TI  - Thom--Sebastiani Construction and Monodromy of Polynomials
JO  - Informatics and Automation
PY  - 2002
SP  - 106
EP  - 123
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a6/
LA  - en
ID  - TRSPY_2002_238_a6
ER  - 
%0 Journal Article
%A A. Dimca
%A A. Némethi
%T Thom--Sebastiani Construction and Monodromy of Polynomials
%J Informatics and Automation
%D 2002
%P 106-123
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a6/
%G en
%F TRSPY_2002_238_a6
A. Dimca; A. Némethi. Thom--Sebastiani Construction and Monodromy of Polynomials. Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 106-123. http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a6/