Free Divisors and Duality for $\mathcal D$-Modules
Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between $\mathcal D$-modules and free divisors was studied in the general setting by L. Narváez and F. J. Calderón. Using the ideas of their works, we prove in this article a new duality formula between two $\mathcal D$-modules associated to a class of free divisors on $\mathbb C^n$ and give some applications.
@article{TRSPY_2002_238_a5,
     author = {F. J. Castro-Jim\'enez and J. M. Ucha},
     title = {Free {Divisors} and {Duality} for $\mathcal D${-Modules}},
     journal = {Informatics and Automation},
     pages = {97--105},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a5/}
}
TY  - JOUR
AU  - F. J. Castro-Jiménez
AU  - J. M. Ucha
TI  - Free Divisors and Duality for $\mathcal D$-Modules
JO  - Informatics and Automation
PY  - 2002
SP  - 97
EP  - 105
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a5/
LA  - en
ID  - TRSPY_2002_238_a5
ER  - 
%0 Journal Article
%A F. J. Castro-Jiménez
%A J. M. Ucha
%T Free Divisors and Duality for $\mathcal D$-Modules
%J Informatics and Automation
%D 2002
%P 97-105
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a5/
%G en
%F TRSPY_2002_238_a5
F. J. Castro-Jiménez; J. M. Ucha. Free Divisors and Duality for $\mathcal D$-Modules. Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105. http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a5/