Locally Quasi-Homogeneous Free Divisors Are Koszul Free
Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a complex analytic manifold and $D\subset X$ be a free divisor.
If $D$ is locally quasi-homogeneous, then the logarithmic de Rham complex
associated to $D$ is quasi-isomorphic to $\mathbf R j_\ast (\mathbb
C_{X\setminus D})$, which is a perverse sheaf. On the other hand, the
logarithmic de Rham complex associated to a Koszul-free divisor is
perverse. In this paper, we prove that every locally quasi-homogeneous free
divisor is Koszul free.
@article{TRSPY_2002_238_a3,
author = {F. Calder\'on-Moreno and L. Narv\'aez-Macarro},
title = {Locally {Quasi-Homogeneous} {Free} {Divisors} {Are} {Koszul} {Free}},
journal = {Informatics and Automation},
pages = {81--85},
publisher = {mathdoc},
volume = {238},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a3/}
}
F. Calderón-Moreno; L. Narváez-Macarro. Locally Quasi-Homogeneous Free Divisors Are Koszul Free. Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85. http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a3/