Locally Quasi-Homogeneous Free Divisors Are Koszul Free
Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complex analytic manifold and $D\subset X$ be a free divisor. If $D$ is locally quasi-homogeneous, then the logarithmic de Rham complex associated to $D$ is quasi-isomorphic to $\mathbf R j_\ast (\mathbb C_{X\setminus D})$, which is a perverse sheaf. On the other hand, the logarithmic de Rham complex associated to a Koszul-free divisor is perverse. In this paper, we prove that every locally quasi-homogeneous free divisor is Koszul free.
@article{TRSPY_2002_238_a3,
     author = {F. Calder\'on-Moreno and L. Narv\'aez-Macarro},
     title = {Locally {Quasi-Homogeneous} {Free} {Divisors} {Are} {Koszul} {Free}},
     journal = {Informatics and Automation},
     pages = {81--85},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a3/}
}
TY  - JOUR
AU  - F. Calderón-Moreno
AU  - L. Narváez-Macarro
TI  - Locally Quasi-Homogeneous Free Divisors Are Koszul Free
JO  - Informatics and Automation
PY  - 2002
SP  - 81
EP  - 85
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a3/
LA  - en
ID  - TRSPY_2002_238_a3
ER  - 
%0 Journal Article
%A F. Calderón-Moreno
%A L. Narváez-Macarro
%T Locally Quasi-Homogeneous Free Divisors Are Koszul Free
%J Informatics and Automation
%D 2002
%P 81-85
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a3/
%G en
%F TRSPY_2002_238_a3
F. Calderón-Moreno; L. Narváez-Macarro. Locally Quasi-Homogeneous Free Divisors Are Koszul Free. Informatics and Automation, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85. http://geodesic.mathdoc.fr/item/TRSPY_2002_238_a3/