Option Pricings in an Incomplete Market with Regime Switching
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 201-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a model of an incomplete market by adjoining the Black–Scholes exponential Brownian motion model for stock fluctuations to a hidden Markov process which represents the state of information in the investors' community. We investigate option pricing procedures for this incomplete model. Under an additional economic assumption, we provide an arbitrage-free pricing framework. In addition to European call options, we study optimal stopping problems related to some nonstandard types of options, such as perpetual American put and lookback options. We obtain explicit solutions by extending the technique of smooth fit to allow jump discontinuities. The optimal strategy involves jumping over the optimal boundary. In the end, we discuss the corresponding discrete CRR-type model and the first passage time problem for this regime-switching model.
@article{TRSPY_2002_237_a9,
     author = {X. Guo},
     title = {Option {Pricings} in an {Incomplete} {Market} with {Regime} {Switching}},
     journal = {Informatics and Automation},
     pages = {201--211},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a9/}
}
TY  - JOUR
AU  - X. Guo
TI  - Option Pricings in an Incomplete Market with Regime Switching
JO  - Informatics and Automation
PY  - 2002
SP  - 201
EP  - 211
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a9/
LA  - en
ID  - TRSPY_2002_237_a9
ER  - 
%0 Journal Article
%A X. Guo
%T Option Pricings in an Incomplete Market with Regime Switching
%J Informatics and Automation
%D 2002
%P 201-211
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a9/
%G en
%F TRSPY_2002_237_a9
X. Guo. Option Pricings in an Incomplete Market with Regime Switching. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 201-211. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a9/

[1] Anderson T. G., “Return volatility and trading volume: an information flow interpretation of stochastic volatility”, J. Fin., 51 (1996), 169–204 | DOI

[2] Avellaneda M., Levy A., Parás A., “Pricing and hedging derivative securities in markets with uncertain volatilities”, Appl. Math. Fin., 2 (1995), 73–88 | DOI

[3] Bachelier L., “Théorie de la spéculation”, Ann. Sci. Ecole Norm. Supér. Sér. 3, 17 (1900), 21–86 | MR | Zbl

[4] Back K., “Insider trading in continuous time”, Rev. Fin. Stud., 5 (1992), 387–409 | DOI

[5] Ball C. A., “A review of stochastic volatility models with applications to option pricing”, Fin. Markets, Inst. and Instrum., 2 (1993), 55–69

[6] Billingsley P., Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl

[7] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Polit. Econ., 81 (1973), 637–654 | DOI | Zbl

[8] Cox J., Ross S., Rubinstein M., “Option pricing, a simplified approach”, J. Fin. Econ., 7 (1979), 229–263 | DOI | Zbl

[9] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[10] Di Mazi Dzh. B., Kabanov Yu. M., Runggalder V. I., “Khedzhirovanie optsionov na aktsiyu pri srednekvadratichnom kriterii i markovskikh volatilnostyakh”, Teoriya veroyatn. i ee primen., 39:1 (1994), 211–222 | MR

[11] Duffie D., Personal communication, 1999

[12] Duffie D., Harrison M., “Arbitrage pricing of perpetual lookback options”, Ann. Appl. Probab., 3 (1993), 641–651 | DOI | MR | Zbl

[13] Duffie D., Huang C. F., “Multiperiod security markets with differential information”, J. Math. Econ., 15 (1986), 283–303 | DOI | MR | Zbl

[14] Durrett R., Brownian motion and martingales in analysis, Wadsworth Inc., Belmont, CA, 1984 | MR | Zbl

[15] Elliott R., Stochastic calculus and applications, Appl. Math., 18, Springer-Verl., Berlin etc., 1982 | MR | Zbl

[16] Feller W., An introduction to probability theory and its applications, 2nd ed, V. 2, J. Wiley and Sons, New York, 1971 | Zbl

[17] Fleming W. H., Rishel R. W., Deterministic and stochastic optimal control, Springer-Verl., Berlin, 1975 | MR

[18] Föllmer H., Schweizer M., “Hedging of contingent claims under incomplete market”, Applied stochastic analysis, Stoch. Monogr., 5, eds. M. H. A. Davis, R. J. Elliott, Gordon and Breach, London, 1990, 389–414 | MR

[19] Gerber H. U., Shiu E. S. W., “Martingale approach to pricing perpetual American options on two stocks”, Math. Fin., 6:3 (1996), 303–322 | DOI | MR | Zbl

[20] Grorud A., Pontier M., “Insider trading in a continuous time market model”, Intern. J. Theor. and Appl. Fin., 1 (1998), 331–347 | DOI | Zbl

[21] Guillaume D. M., Dacorogna M. M., Davé R. R., Muller U. A., Olsen R. B., Pictet O. V., “From the bird's eye to the microscope: A survey of stylized facts of the intra-daily foreign exchange market”, Fin. and Stoch., 1:2 (1997), 95–129 | DOI | Zbl

[22] Chan D., Guo X., Pednault E., Identifying the states of a hidden Markov model of stock price fluctuations, Manuscript, 2001

[23] Guo X., Insider information and stock fluctuations, PhD Diss. Math. Dept. Rutgers Univ., 1999 | MR

[24] Guo X., “Information and option pricing”, Quant. Fin., 1 (2001), 38–44 | DOI | MR

[25] Guo X., “An explicit solution to an optimal stopping problem with regime switching”, J. Appl. Probab., 38:2 (2001), 464–481 | DOI | MR | Zbl

[26] Guo X., Shepp L., “Some optimal stopping problems with non-trivial boundaries for pricing exotic options”, J. Appl. Probab., 38:3 (2001), 1–12 | MR

[27] Guo X., Several approaches to explicitly pricing perpetual American options in a regime switching model, Manuscript, 2001

[28] Guo X., “When the bull meets the bear: A first passage time problem in a hidden Markov process”, Methodol. and Comput. Appl. Probab. (to appear) | MR

[29] Harrison M., Kreps D., “Martingales and arbitrage in multiperiod securities markets”, J. Econ. Theory, 20 (1979), 381–408 | DOI | MR | Zbl

[30] Harrison M., Pliska S., “Martingales and stochastic integrals in the theory of continuous trading”, Stoch. Process. and Appl., 11 (1981), 215–260 | DOI | MR | Zbl

[31] Jacka S. D., “Optimal stopping and the American put”, Math. Fin., 1:2 (1991), 1–14 | DOI | Zbl

[32] Kurtz T., Approximation of population processes, CBMS–NSF Reg. Conf. Ser. Appl. Math., 36, Soc. Indust. and Appl. Math., Providence, RI, 1985 | MR

[33] Jacod J., Shiryaev A. N., “Local martingale and the fundamental asset pricing theorems in the discrete-time case”, Labo probab., 453 (1997), 2–16 | MR

[34] Karatzas I., Pikovsky I., “Anticipative portfolio optimization”, Adv. Appl. Probab., 28 (1996), 1095–1122 | DOI | MR | Zbl

[35] Karatzas I., Shreve S., Brownian motion and stochastic calculus, Grad. Texts Math., 113, Springer-Verl., New York etc., 1988 | MR | Zbl

[36] Kramkov D. O., Shiryaev A. N., “O raschetakh ratsionalnoi stoimosti “Russkogo optsiona” v simmetrichnoi binomialnoi modeli $(B,S)$-rynka”, Teoriya veroyatn. i ee primen., 39:1 (1994), 191–200 | MR | Zbl

[37] Kushner H. J., Huang H., “On the weak convergence of a sequence of general stochastic differential equations to a diffusion”, SIAM J. Appl. Math., 40:3 (1984), 528–541 | DOI | MR

[38] Kyle A., “Continuous auctions and insider trading”, Econometrica, 53 (1985), 1315–1335 | DOI | Zbl

[39] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 ; Liptser R. Sh., Shiryaev A. N., Theory of martingales, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl | MR | Zbl

[40] McKean H. P., “Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics”, Indust. Manag. Rev., 6 (1965), 32–39 | MR

[41] McKean H. P., Stochastic integrals, Acad. Press, New York, London, 1969 | MR | Zbl

[42] Naik V., “Option valuation and hedging strategies with jumps in the volatility of asset return”, J. Fin., 48:5 (1993), 1969–1984 | DOI

[43] Oberhettinger F., Badii L., Tables of Laplace transforms, Springer-Verl., Berlin, 1973 | MR | Zbl

[44] Revuz D., Yor M., Continuous martingale and Brownian motion, Springer-Verl., Berlin etc., 1991 | MR | Zbl

[45] Robbins H., Siegmund D., Chow Y., Great expectations: The theory of optimal stopping, Houghton-Mifflin, Boston, 1971 | MR | Zbl

[46] Ross S. A., “Information and volatility, the no-arbitrage martingale approach to timing and resolution irrelevancy”, J. Fin., 44 (1989), 1–8 | DOI

[47] Samuelson P., “Mathematics of speculative price (with an appendix on continuous-time speculative processes by Robert C. Merton)”, SIAM Rev., 15:1 (1973), 1–42 | DOI | MR | Zbl

[48] Shepp L., Shiryaev A. N., “The Russian option: Reduced regret”, Ann. Appl. Probab., 3 (1993), 631–640 | DOI | MR | Zbl

[49] Shepp L. A., Shiryaev A. N., “Novyi vzglyad na raschety “Russkogo optsiona””, Teoriya veroyatn. i ee primen., 39:1 (1994), 130–149 | MR

[50] Shiryaev A. N., Chastnoe soobschenie, 2000 | MR

[51] Skorokhod A. V., “Predelnye teoremy dlya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 1:3 (1956), 289–319 | Zbl

[52] Van Moerbeke P. L. J., “On optimal stopping and free boundary problems”, Arch. Ration. Mech. and Anal., 60:2 (1976), 101–148 | MR | Zbl