Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_237_a6, author = {J.-Ph. Chancelier and B. {\O}ksendal and A. Sulem}, title = {Combined {Stochastic} {Control} and {Optimal} {Stopping,} and {Application}}, journal = {Informatics and Automation}, pages = {149--172}, publisher = {mathdoc}, volume = {237}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/} }
TY - JOUR AU - J.-Ph. Chancelier AU - B. Øksendal AU - A. Sulem TI - Combined Stochastic Control and Optimal Stopping, and Application JO - Informatics and Automation PY - 2002 SP - 149 EP - 172 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/ LA - en ID - TRSPY_2002_237_a6 ER -
J.-Ph. Chancelier; B. Øksendal; A. Sulem. Combined Stochastic Control and Optimal Stopping, and Application. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 149-172. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/
[1] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Math. et Appl., 17, Springer-Verl., Paris, 1994 | MR | Zbl
[2] Bensoussan A., Lions J.-L., Impulse control and quasi-variational inequalities, Gauthier-Villars, Paris, 1984 | MR
[3] Brekke K. A., Øksendal B., “A verification theorem for combined stochastic control and impulse control”, Stochastic analysis and related topics VI, Proc. Sixth Oslo–Silivri Workshop (Geilo, Norway, 1996), Progr. Probab., 42, eds. L. Decreusefond et al., Birkhäuser, Boston, 1998, 211–220 | MR | Zbl
[4] Duckworth K., Zervos M., “A model for investment decisions with switching costs”, Ann. Appl. Probab., 11 (2001), 239–260 | DOI | MR | Zbl
[5] Krylov N. V., Controlled diffusion processes, Appl. Math., 14, Springer-Verl., New York etc., 1980 | MR | Zbl
[6] Knudsen T. S., Meister B., Zervos M., “Valuation of investments in real assets with implications for the stock prices”, SIAM J. Control and Optim., 36 (1998), 2082–2102 | DOI | MR | Zbl
[7] Lapeyre B., Sulem A., Talay D., Understanding numerical analysis for financial models, Cambridge Univ. Press, Cambridge, 2002 (to appear)
[8] Lumley R. R., Zervos M., “A model for investments in the natural resource industry with switching costs”, Math. Oper. Res., 26:4 (2001), 637–653 | DOI | MR | Zbl
[9] Øksendal B., Sulem A., “Optimal consumption and portfolio with both fixed and proportional transaction costs”, SIAM J. Control and Optim. (to appear)
[10] Pham H., “Optimal stopping, free boundary and american option in a jump-diffusion model”, Appl. Math. and Optim., 35 (1997), 145–164 | MR | Zbl
[11] Runggaldier W. J., Stettner L., “On the construction of nearly optimal strategies for a general problem of control of partially observed diffusions”, Stoch. and Stoch. Repts., 37 (1991), 15–47 | MR | Zbl