Combined Stochastic Control and Optimal Stopping, and Application
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 149-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is twofold. The first aim is to study a combined stochastic control and optimal stopping problem: we prove a verification theorem and give a characterization of the value function as a unique viscosity solution to the associated Hamilton–Jacobi–Bellman variational inequality (HJBVI). Although these results have independent interest, they are also motivated by the fact that they are the main ingredients in solving a combined stochastic control and impulse control problem. Indeed, this problem can be reduced to an iterative sequence of combined stochastic control and optimal stopping problems. This method is implemented to solve numerically the quasi-variational inequality (QVI) associated with the problem of portfolio optimization with both fixed and proportional transaction costs. Numerical results are provided.
@article{TRSPY_2002_237_a6,
     author = {J.-Ph. Chancelier and B. {\O}ksendal and A. Sulem},
     title = {Combined {Stochastic} {Control} and {Optimal} {Stopping,} and {Application}},
     journal = {Informatics and Automation},
     pages = {149--172},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/}
}
TY  - JOUR
AU  - J.-Ph. Chancelier
AU  - B. Øksendal
AU  - A. Sulem
TI  - Combined Stochastic Control and Optimal Stopping, and Application
JO  - Informatics and Automation
PY  - 2002
SP  - 149
EP  - 172
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/
LA  - en
ID  - TRSPY_2002_237_a6
ER  - 
%0 Journal Article
%A J.-Ph. Chancelier
%A B. Øksendal
%A A. Sulem
%T Combined Stochastic Control and Optimal Stopping, and Application
%J Informatics and Automation
%D 2002
%P 149-172
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/
%G en
%F TRSPY_2002_237_a6
J.-Ph. Chancelier; B. Øksendal; A. Sulem. Combined Stochastic Control and Optimal Stopping, and Application. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 149-172. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a6/

[1] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Math. et Appl., 17, Springer-Verl., Paris, 1994 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Impulse control and quasi-variational inequalities, Gauthier-Villars, Paris, 1984 | MR

[3] Brekke K. A., Øksendal B., “A verification theorem for combined stochastic control and impulse control”, Stochastic analysis and related topics VI, Proc. Sixth Oslo–Silivri Workshop (Geilo, Norway, 1996), Progr. Probab., 42, eds. L. Decreusefond et al., Birkhäuser, Boston, 1998, 211–220 | MR | Zbl

[4] Duckworth K., Zervos M., “A model for investment decisions with switching costs”, Ann. Appl. Probab., 11 (2001), 239–260 | DOI | MR | Zbl

[5] Krylov N. V., Controlled diffusion processes, Appl. Math., 14, Springer-Verl., New York etc., 1980 | MR | Zbl

[6] Knudsen T. S., Meister B., Zervos M., “Valuation of investments in real assets with implications for the stock prices”, SIAM J. Control and Optim., 36 (1998), 2082–2102 | DOI | MR | Zbl

[7] Lapeyre B., Sulem A., Talay D., Understanding numerical analysis for financial models, Cambridge Univ. Press, Cambridge, 2002 (to appear)

[8] Lumley R. R., Zervos M., “A model for investments in the natural resource industry with switching costs”, Math. Oper. Res., 26:4 (2001), 637–653 | DOI | MR | Zbl

[9] Øksendal B., Sulem A., “Optimal consumption and portfolio with both fixed and proportional transaction costs”, SIAM J. Control and Optim. (to appear)

[10] Pham H., “Optimal stopping, free boundary and american option in a jump-diffusion model”, Appl. Math. and Optim., 35 (1997), 145–164 | MR | Zbl

[11] Runggaldier W. J., Stettner L., “On the construction of nearly optimal strategies for a general problem of control of partially observed diffusions”, Stoch. and Stoch. Repts., 37 (1991), 15–47 | MR | Zbl