On Upper and Lower Prices in Discrete-Time Models
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 143-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple convex ordering argument in the class of equivalent martingale measures is used to determine the upper and lower prices of a convex claim in a general discrete-time model ($N$-period model) with bounded components. Under an approximation condition, the upper price is given by the price in a related Cox–Ross–Rubinstein model. As an application, we discuss a discrete-time stochastic volatility model.
@article{TRSPY_2002_237_a5,
     author = {L. R\"uschendorf},
     title = {On {Upper} and {Lower} {Prices} in {Discrete-Time} {Models}},
     journal = {Informatics and Automation},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a5/}
}
TY  - JOUR
AU  - L. Rüschendorf
TI  - On Upper and Lower Prices in Discrete-Time Models
JO  - Informatics and Automation
PY  - 2002
SP  - 143
EP  - 148
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a5/
LA  - en
ID  - TRSPY_2002_237_a5
ER  - 
%0 Journal Article
%A L. Rüschendorf
%T On Upper and Lower Prices in Discrete-Time Models
%J Informatics and Automation
%D 2002
%P 143-148
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a5/
%G en
%F TRSPY_2002_237_a5
L. Rüschendorf. On Upper and Lower Prices in Discrete-Time Models. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 143-148. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a5/

[1] Frey R., “Superreplication in stochastic volatility models and optimal stopping”, Fin. and Stoch., 4 (2000), 161–187 | DOI | MR | Zbl

[2] Frey R., Sin C. A., “Bounds on European option prices under stochastic volatility”, Math. Fin., 9 (1999), 97–116 | DOI | MR | Zbl

[3] Guschin A. A., Mordetski E., “Granitsy tsen optsionov dlya semimartingalnykh modelei rynka”, Trudy MIAN, 80–122 | Zbl

[4] Schmitz N., Wrede M., Variations of the Cox–Ross–Rubinstein model, Preprint 02/00, Univ. Münster, 2000 | Zbl

[5] Schulz C., Obere und untere Preise in unvollständigen Märkten, Diplomarbeit, Univ. Freiburg, 2001

[6] Shataev O. V., “O spravedlivoi tsene optsiona evropeiskogo tipa”, UMN, 53:6 (1998), 269–270 | MR | Zbl

[7] Shiryaev A. N., Essentials of stochastic finance. Facts, models, theory, World Sci., Singapore, 1999 | MR | Zbl

[8] Wrede M., Upper price for European options in incomplete $n$-period models, Preprint 17/00, Univ. Münster, 2000