Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_237_a5, author = {L. R\"uschendorf}, title = {On {Upper} and {Lower} {Prices} in {Discrete-Time} {Models}}, journal = {Informatics and Automation}, pages = {143--148}, publisher = {mathdoc}, volume = {237}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a5/} }
L. Rüschendorf. On Upper and Lower Prices in Discrete-Time Models. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 143-148. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a5/
[1] Frey R., “Superreplication in stochastic volatility models and optimal stopping”, Fin. and Stoch., 4 (2000), 161–187 | DOI | MR | Zbl
[2] Frey R., Sin C. A., “Bounds on European option prices under stochastic volatility”, Math. Fin., 9 (1999), 97–116 | DOI | MR | Zbl
[3] Guschin A. A., Mordetski E., “Granitsy tsen optsionov dlya semimartingalnykh modelei rynka”, Trudy MIAN, 80–122 | Zbl
[4] Schmitz N., Wrede M., Variations of the Cox–Ross–Rubinstein model, Preprint 02/00, Univ. Münster, 2000 | Zbl
[5] Schulz C., Obere und untere Preise in unvollständigen Märkten, Diplomarbeit, Univ. Freiburg, 2001
[6] Shataev O. V., “O spravedlivoi tsene optsiona evropeiskogo tipa”, UMN, 53:6 (1998), 269–270 | MR | Zbl
[7] Shiryaev A. N., Essentials of stochastic finance. Facts, models, theory, World Sci., Singapore, 1999 | MR | Zbl
[8] Wrede M., Upper price for European options in incomplete $n$-period models, Preprint 17/00, Univ. Münster, 2000