On the Unity of Quantitative Methods of Pricing in Finance and Insurance
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 57-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship between the calculation of premiums and reserves in insurance and finance is studied. It is shown how traditional actuarial methods of calculation in property insurance are derived from the financial no-arbitrage principle. A general method is presented for estimating the probability of ruin of an insurance company. In life insurance, the main emphasis is placed on the description of innovation schemes of “flexible” insurance, and it is pointed out that the calculation of the corresponding premiums and reserves is related with the Black–Scholes formula and equation. A new approach to the insurance and reinsurance of catastrophic risks is presented which is based on their diversification on financial markets by means of insurance derivative securities.
@article{TRSPY_2002_237_a2,
     author = {A. V. Melnikov},
     title = {On the {Unity} of {Quantitative} {Methods} of {Pricing} in {Finance} and {Insurance}},
     journal = {Informatics and Automation},
     pages = {57--79},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a2/}
}
TY  - JOUR
AU  - A. V. Melnikov
TI  - On the Unity of Quantitative Methods of Pricing in Finance and Insurance
JO  - Informatics and Automation
PY  - 2002
SP  - 57
EP  - 79
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a2/
LA  - ru
ID  - TRSPY_2002_237_a2
ER  - 
%0 Journal Article
%A A. V. Melnikov
%T On the Unity of Quantitative Methods of Pricing in Finance and Insurance
%J Informatics and Automation
%D 2002
%P 57-79
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a2/
%G ru
%F TRSPY_2002_237_a2
A. V. Melnikov. On the Unity of Quantitative Methods of Pricing in Finance and Insurance. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 57-79. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a2/

[1] Aase K. K., An equilibrium model of catastrophe insurance futures and spreads, Preprint. Bergen: Norwegian School of Economics and Business Administration, 1996. 27 p; Geneva Papers on Risk and Insurance Theory, 24, no. 1, 1999, 69–96

[2] Aase K. K., Persson S. A., “Pricing of unit-linked life insurance policies”, Scand. Actuar. J., 1994, no. 1, 26–52 | MR | Zbl

[3] Albrecht P., “An actuarial approach to risk management with CAT insurance contracts”, Actuarial approach for financial risks, 5th Intern. Colloq., Brussels, 1995, 952–974

[4] Bacinello A. R., Ortu F., “Pricing equity-linked life insurance with endogenous minimum guarantees”, Insurance Math. and Econ., 12 (1993), 245–257 | DOI | MR | Zbl

[5] Beard R. E., Pentikainen T., Pesonen E., Risk theory: The stochastic basis of insurance, 3rd ed., Chapman and Hall, London, 1984 | Zbl

[6] Brennan M. J., Schwartz E. S., “The pricing of equity-linked life insurance policies with an asset value guarantee”, J. Fin. Econ., 3 (1976), 195–213 | DOI

[7] Bühlmann H., Mathematical methods in risk theory, Springer-Verl., New York etc., 1970 | MR | Zbl

[8] Bühlmann H., Delbaen F., Embrechts P., Shiryaev A. N., “No-arbitrage, change of measure and conditional Esscher transforms”, CWI Quart., 9:4 (1996), 291–317 | MR | Zbl

[9] Canter M. S., Cole J. B., Sandor R. L., “Insurance derivatives: A new asset class for the capital markets and a new hedging tool in the insurance industry”, J. Appl. Corp. Fin., 10:3 (1997), 69–83 | DOI

[10] H. Cavanna (ed.), Financial innovations, Routledge, London, New York, 1992

[11] Catastrophe insurance: Background Rept., Chicago Board of Trade, 1995

[12] Cox S. H., Pedersen H. W., “Catastrophe risk bonds”, Trans. 26th Intern. Congr. Actuar., 7 (1996), 483–512

[13] Cramér H., Collective risk theory, Scandia Insurance Company, Stockholm, 1955 | MR

[14] Cummins J. D., Geman H., “Pricing catastrophe futures and call spreads: an arbitrage approach”, J. Fixed Income, 4 (1995), 46–57 | DOI

[15] Embrechts P., Meister S., “Pricing insurance derivatives, the case of CAT-futures”, Proc. 1st Bowles Symp., ed. S. Cox, Georgia State Univ., Soc. Actuar., Atlanta, 1995

[16] Embrechts P., Klüppelberg C., Mikosh T., Modelling extremal events for insurance and finance, Springer, Berlin, 1997 | MR | Zbl

[17] Embrechts P., Frey R., Furrer H., “Stochastic processes in insurance and finance”, Stochastic processes: Theory and methods, Handbook of Statistics, 19, eds. C. R. Rao, D. N. Shaubhag, Elsevier Sci., Amsterdam, 2001, 365–412 | MR | Zbl

[18] Delbaen F., Haezendonck J., “A martingale approach to premium calculation principles in an arbitrage free market”, Insurance Math. and Econ., 8 (1989), 269–277 | DOI | MR | Zbl

[19] Delbaen F., Schachermayer W., “The variance-optimal martingale measure for continuous processes”, Bernoulli, 2:1 (1996), 81–105 | DOI | MR | Zbl

[20] Dufresne F., Gerber H. U., “Risk theory for the compound Poisson process that is perturbed by diffusion”, Insurance Math. and Econ., 10 (1991), 51–59 | DOI | MR | Zbl

[21] Frolova A. G., “Nekotorye matematicheskie modeli teorii riska”, Vseros. shk.-kollok. po stokhasticheskim metodam geometrii i analiza, Tez. dokl., TVP, M., 1994, 117–118

[22] Gerber H. U., “Martingales in risk theory”, Mitt. Schweiz. Verein. Versicherungsmath, 73 (1973), 205–216 | MR | Zbl

[23] Gerber H. U., “An introduction to mathematical risk theory”, S.S. Huebner Foundation for Insurance Education, Wharton School, Univ. Pennsylvania, S. S. Huebner Found. Monogr. Ser., 8, University of Pennsylvania Wharton School S. S. Huebner Foundation for Insurance Education, Philadelphia, Pa, 1979 | MR | Zbl

[24] Gerber H. U., Life insurance mathematics, Springer-Verl., Berlin, 1995 | MR | Zbl

[25] Gerber H. U., Shiu E. S. W., “Actuarial bridges to dynamic hedging and option pricing”, Insurance Math. and Econ., 17 (1996), 152–163 | MR

[26] Goovaerts M. J., De Vylder F., Haezendonck J., Insurance premiums, North-Holland, Amsterdam, 1984 | MR | Zbl

[27] Grandel J., Aspects of risk theory, Springer-Verl., New York, 1991 | MR | Zbl

[28] Hull J., Options, futures and other derivative securities, Prentice-Hall, New York, 1999

[29] Karatzas I., Shreve S. E., Methods of mathematical finance, Springer-Verl., New York, 1998 | MR

[30] Lamberton D., Lapeyre B., Introduction to stochastic calculus applied to finance, Chapman and Hall, London, 1996 | MR

[31] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[32] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 | MR | Zbl

[33] Litzenberger R. H., Beaglehole D. R., Reynolds C. E., “Assessing catastrophe reinsurance-linked securities as a new asset class”, J. Portfolio Manag., Spec. Iss., 1996, 76–86

[34] Melnikov A. V., “O stokhasticheskom analize v sovremennoi matematike finansov i strakhovaniya”, Obozr. prikl. i promyshl. matematiki., 2:4 (1995), 514–526

[35] Melnikov A. V., Finansovye rynki: stokhasticheskii analiz i raschet proizvodnykh tsennykh bumag, TVP, M., 1997

[36] Melnikov A. V., “Finansovye innovatsii i problemy upravleniya riskom”, Upravlenie riskom, 4 (1997), 34–41

[37] Melnikov A. V., “Ob innovatsionnykh i riskovykh aspektakh evolyutsii finansovoi sistemy”, Vopr. analiza riska, 1:1 (1999), 22–27

[38] Melnikov A. V., “O globalnykh innovatsionnykh protsessakh na finansovykh rynkakh”, Vopr. analiza rynka, 1:2–3 (1999), 10–14

[39] Melnikov A. V., Financial system: Innovations and pricing of risks, Tech. Rept 5, Univ. Karlsruhe, 1999, 21 pp.

[40] Melnikov A. V., Shiryaev A. N., “Criteria for the absence of arbitrage in the financial market”, Uspekhi teorii veroyatnostei i ee primenenii II, Tr. IV Ros.-Fin. Simpoz. po teorii veroyatnostei i matematicheskoi statistike (Moskva, 1993), Uspekhi teorii veroyatnostei i ee primenenii, 8, eds. A.N. Shiryaev i dr., TVP, M., 1996, 121–134 | Zbl

[41] Merton R. C., Continuous-time finance, Blackwell, Oxford, 1990

[42] Möller M., “Pricing PCS-options with the use of Esscher-transform”, Trans. 26th Intern. Congr. Actuar., 1996, 1299–1310

[43] Mø{l}ler Th., “Risk-minimizing hedging strategies for unit-linked life insurance contracts”, Astin Bull., 28:1 (1998), 17–47 | DOI

[44] Musiela M., Rutkowski M., Martingale methods in financial modelling, Appl. Math., 36, Springer-Verl., Berlin, 1997 | MR | Zbl

[45] E. H. Neave (ed.), The economic organization of a financial system, Routledge, London, New York, 1991

[46] Norberg R., “Addendum to Hattendorff's theorem and Thiele's differential equation generalized”, Scand. Actuar. J., 1996, no. 1, 50–53 | MR | Zbl

[47] Norberg R., “Metody stokhasticheskogo analiza v strakhovanii zhizni”, Obozr. prikl. i promyshl. matematiki, 5:1 (1998), 83–115 | MR | Zbl

[48] Rolski T., Schmidli H., Schmidt V., Teugels J., Stochastic processes for insurance and finance, Wiley, Chichester, 1998 | MR

[49] Schmidli H., “Cramer–Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion”, Insurance Math. and Econ., 16 (1995), 135–149 | DOI | MR | Zbl

[50] Schmock U., “Estimating the value of the Wincat coupons of the Winterthur Insurance convertible bond”, Astin Bull., 29:1 (1999), 101–163 | DOI

[51] Shiryaev A. N., Kabanov Yu. M., Kramkov D. O., Melnikov A. V., “K teorii raschetov optsionov Evropeiskogo i Amerikanskogo tipov. I: Diskretnoe vremya”, Teoriya veroyatn. i ee primen., 39:1 (1994), 23–79 | MR | Zbl

[52] Shiryaev A. N., Kabanov Yu. M., Kramkov D. O., Melnikov A. V., “K teorii raschetov optsionov Evropeiskogo i Amerikanskogo tipov. II: Nepreryvnoe vremya”, Teoriya veroyatn. i ee primen., 39:1 (1994), 80–129 | MR | Zbl

[53] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, T. 1, 2, Fazis, M., 1998

[54] Sondermann D., “Reinsurance in arbitrage free market”, Insurance Math. and Econ., 10 (1991), 191–202 | DOI | MR | Zbl

[55] Sorensen M., “A semimartingale approach to some problems in risk theory”, Astin Bull., 26:1 (1996), 15–23 | DOI

[56] Steffensen M., A no-arbitrage approach to Thiele's differential equation, Working paper 155. Lab. Actuar. Math., Univ. Copenhagen, 1998, 19 pp. | MR

[57] Straub E., Non-life insurance mathematics, Springer-Verl., Zürich, 1988 | MR

[58] Vorm Christensen C., Schmidli H., Pricing catastrophe insurance products based on actually reported claims, Working paper 16. Centre Anal. Fin., Aarchus Univ., 1998, 21 pp.

[59] Vorm Christensen C., A new model for pricing catastrophe insurance derivatives, Working paper 28. Centre Anal. Fin., Aarchus Univ., 1999, 20 pp.

[60] Wagner F., “Risk securitization: An alternative of risk transfer of insurance companies”, Geneva Pap. Risk and Insur., 23 (1998), 540–607