The Cheapest Superstrategy without Optional Decomposition
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255

Voir la notice de l'article provenant de la source Math-Net.Ru

We follow very closely the Föllmer and Kabanov Lagrange multiplier approach to superstrategies in perfect incomplete markets, except that we provide a very simple proof of the existence of a minimizing multiplier in the case of a European option under the assumption that the discounted process of the underlying is an $L^{2}(P)$-martingale for some probability $P$. Even if it gives the existence of a superstrategy associated with the supremum of the expectations under equivalent martingale measures, our result is much weaker than the optional decomposition theorem.
@article{TRSPY_2002_237_a14,
     author = {C. Martini},
     title = {The {Cheapest} {Superstrategy} without {Optional} {Decomposition}},
     journal = {Informatics and Automation},
     pages = {249--255},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a14/}
}
TY  - JOUR
AU  - C. Martini
TI  - The Cheapest Superstrategy without Optional Decomposition
JO  - Informatics and Automation
PY  - 2002
SP  - 249
EP  - 255
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a14/
LA  - en
ID  - TRSPY_2002_237_a14
ER  - 
%0 Journal Article
%A C. Martini
%T The Cheapest Superstrategy without Optional Decomposition
%J Informatics and Automation
%D 2002
%P 249-255
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a14/
%G en
%F TRSPY_2002_237_a14
C. Martini. The Cheapest Superstrategy without Optional Decomposition. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a14/