Hedging in a~Model with Transaction Costs
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 217-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a general semimartingale model of a currency market with proportional transaction costs. Assuming that the price process is continuous and bounded, we prove a hedging theorem describing the set of initial endowments allowing one to superreplicate a contingent claim in various currencies by a self-financing portfolio.
@article{TRSPY_2002_237_a11,
     author = {Yu. M. Kabanov and G. Last},
     title = {Hedging in {a~Model} with {Transaction} {Costs}},
     journal = {Informatics and Automation},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a11/}
}
TY  - JOUR
AU  - Yu. M. Kabanov
AU  - G. Last
TI  - Hedging in a~Model with Transaction Costs
JO  - Informatics and Automation
PY  - 2002
SP  - 217
EP  - 223
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a11/
LA  - en
ID  - TRSPY_2002_237_a11
ER  - 
%0 Journal Article
%A Yu. M. Kabanov
%A G. Last
%T Hedging in a~Model with Transaction Costs
%J Informatics and Automation
%D 2002
%P 217-223
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a11/
%G en
%F TRSPY_2002_237_a11
Yu. M. Kabanov; G. Last. Hedging in a~Model with Transaction Costs. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 217-223. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a11/

[1] Cvitanić J., Karatzas I., “Hedging and portfolio optimization under transaction costs: a martingale approach”, Math. Fin., 6:2 (1996), 133–165 | DOI | MR | Zbl

[2] Cvitanić J., Pham H., Touzi N., “A closed-form solution to the problem of super-replication under transaction costs”, Fin. and Stoch., 3:1 (1999), 35–54 | DOI | MR | Zbl

[3] Davis M. H. A., Clark J. M. C., “A note on super-replicating strategies”, Philos. Trans. Roy. Soc. A, 347 (1994), 485–494 | DOI | Zbl

[4] Delbaen F., Kabanov Yu. M, Valkeila S., “Hedging under transaction costs in currency markets: a discrete-time model”, Math. Fin., 12:1 (2002), 45–61 | DOI | MR | Zbl

[5] Dunford N., Schwartz J. T., Linear operators. Pt 1: General theory, Wiley, New York, 1988 | MR

[6] Föllmer H., Kabanov Yu. M., “Optional decomposition theorems in discrete time”, Atti del convegno in onore di Oliviero Lessi (Padova, 25–26 marzo 1996), Univ. Padua, Padua, 1996, 47–68

[7] Föllmer H., Kramkov D. O., “Optional decompositions under constraints”, Probab. Theory and Relat. Fields, 109:1 (1998), 1–25 | MR

[8] Hall P., Heyde C. C., Martingale limit theory and its applications, Acad. Press, New York, 1980 | MR

[9] Kabanov Yu. M., “Hedging and liquidation under transaction costs in currency markets”, Fin. and Stoch., 3:2 (1999), 237–248 | DOI | MR | Zbl

[10] Kabanov Yu. M., Last G., “Hedging under transaction costs in currency markets: a continuous-time model”, Math. Fin., 12:1 (2002), 63–70 | DOI | MR | Zbl

[11] Kramkov D. O., “Optional decomposition of supermartingales and hedging in incomplete security markets”, Probab. Theory and Relat. Fields, 105:4 (1996), 459–479 | DOI | MR | Zbl

[12] Levental S., Skorohod A. V., “On the possibility of hedging options in the presence of transaction costs”, Ann. Appl. Probab., 7 (1997), 410–443 | DOI | MR | Zbl

[13] Soner H. M., Shreve S. E., Cvitanić J., “There is no nontrivial hedging portfolio for option pricing with transaction costs”, Ann. Appl. Probab., 5 (1995), 327–355 | DOI | MR | Zbl