A~Note on Martingale Measures with Bounded Densities
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 212-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a discrete-time martingale with a finite horizon. We show that the set of equivalent martingale measures with bounded densities is dense in the set of equivalent martingale measures with respect to the total variation norm.
@article{TRSPY_2002_237_a10,
     author = {M. R\'asonyi},
     title = {A~Note on {Martingale} {Measures} with {Bounded} {Densities}},
     journal = {Informatics and Automation},
     pages = {212--216},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a10/}
}
TY  - JOUR
AU  - M. Rásonyi
TI  - A~Note on Martingale Measures with Bounded Densities
JO  - Informatics and Automation
PY  - 2002
SP  - 212
EP  - 216
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a10/
LA  - en
ID  - TRSPY_2002_237_a10
ER  - 
%0 Journal Article
%A M. Rásonyi
%T A~Note on Martingale Measures with Bounded Densities
%J Informatics and Automation
%D 2002
%P 212-216
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a10/
%G en
%F TRSPY_2002_237_a10
M. Rásonyi. A~Note on Martingale Measures with Bounded Densities. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 212-216. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a10/

[1] Dellacherie C., Meyer P. A., Probabilities and potential, North-Holland, Amsterdam, 1978 | MR | Zbl

[2] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stoch. and Stoch. Repts., 29 (1990), 185–201 | MR | Zbl

[3] Hiriart-Urruty J.-B., Lemaréchal C., Convex analysis and minimization algorithms, Pt 1: Fundamentals, Springer-Verl., Berlin, Heidelberg, New York, 1996 | MR

[4] Kabanov Yu. M., Stricker Ch., “On equivalent martingale measures with bounded densities”, Séminaire de probabilités, XXXV, Lect. Notes Math., 1755, eds. J. Azéma et al., Springer-Verl., Berlin, 2001, 139–148 | MR | Zbl