Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing
Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 12-56

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the foundations of stochastic mathematical finance and has three main purposes: (1) To present a self-contained construction of the vector stochastic integral $H\bullet X$ with respect to a $d$-dimensional semimartingale $X=(X_t^1,\dots ,X_t^d)$. This notion is more general than the componentwise stochastic integral $\sum _{i=1}^d H^i\bullet X^i$. (2) To show that vector stochastic integrals are important in mathematical finance. To be more precise, the notion of componentwise stochastic integral is insufficient in the First and Second Fundamental Theorems of Asset Pricing. (3) To prove the Second Fundamental Theorem of Asset Pricing in the general setting, i.e. in the continuous-time case for a general multidimensional semimartingale. The proof is based on the martingale techniques and, in particular, on the properties of the vector stochastic integral.
@article{TRSPY_2002_237_a1,
     author = {A. N. Shiryaev and A. S. Cherny},
     title = {Vector {Stochastic} {Integrals} and the {Fundamental} {Theorems} of {Asset} {Pricing}},
     journal = {Informatics and Automation},
     pages = {12--56},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a1/}
}
TY  - JOUR
AU  - A. N. Shiryaev
AU  - A. S. Cherny
TI  - Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing
JO  - Informatics and Automation
PY  - 2002
SP  - 12
EP  - 56
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a1/
LA  - ru
ID  - TRSPY_2002_237_a1
ER  - 
%0 Journal Article
%A A. N. Shiryaev
%A A. S. Cherny
%T Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing
%J Informatics and Automation
%D 2002
%P 12-56
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a1/
%G ru
%F TRSPY_2002_237_a1
A. N. Shiryaev; A. S. Cherny. Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing. Informatics and Automation, Stochastic financial mathematics, Tome 237 (2002), pp. 12-56. http://geodesic.mathdoc.fr/item/TRSPY_2002_237_a1/