On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 66-78
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of Morse–Smale diffeomorphisms is considered that do not admit heteroclinic intersections and are defined on three-manifolds. To each diffeomorphism $f$, we associate an enriched graph $G(f)$ and, for each sink $\omega$, we define a scheme $S(\omega )$ which is a link of tori, the Klein bottle, and simple closed curves embedded in $S^2\times S^1$. We show that diffeomorphisms $f_1$ and $f_2$ are topologically conjugate if and only if (1) the corresponding graphs $G(f_1)$ and $G(f_2)$ are isomorphic and the permutations induced by the dynamics $f_1$ and $f_2$ on the vertices and edges of the graphs are conjugate; (2) two sinks corresponding to isomorphic vertices have equivalent schemes; and (3) for any two saddles corresponding to isomorphic vertices and having one-dimensional unstable manifolds, the corresponding pairs of curves in $S^2\times S^1$ associated with the one-dimensional separatrices are concordantly embedded.
@article{TRSPY_2002_236_a7,
author = {Ch. Bonatti and V. Z. Grines and V. S. Medvedev and E. Peku},
title = {On {Morse--Smale} {Diffeomorphisms} without {Heteroclinic} {Intersections} on {Three-Manifolds}},
journal = {Informatics and Automation},
pages = {66--78},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/}
}
TY - JOUR AU - Ch. Bonatti AU - V. Z. Grines AU - V. S. Medvedev AU - E. Peku TI - On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds JO - Informatics and Automation PY - 2002 SP - 66 EP - 78 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/ LA - ru ID - TRSPY_2002_236_a7 ER -
%0 Journal Article %A Ch. Bonatti %A V. Z. Grines %A V. S. Medvedev %A E. Peku %T On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds %J Informatics and Automation %D 2002 %P 66-78 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/ %G ru %F TRSPY_2002_236_a7
Ch. Bonatti; V. Z. Grines; V. S. Medvedev; E. Peku. On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 66-78. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/