On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 66-78

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of Morse–Smale diffeomorphisms is considered that do not admit heteroclinic intersections and are defined on three-manifolds. To each diffeomorphism $f$, we associate an enriched graph $G(f)$ and, for each sink $\omega$, we define a scheme $S(\omega )$ which is a link of tori, the Klein bottle, and simple closed curves embedded in $S^2\times S^1$. We show that diffeomorphisms $f_1$ and $f_2$ are topologically conjugate if and only if (1) the corresponding graphs $G(f_1)$ and $G(f_2)$ are isomorphic and the permutations induced by the dynamics $f_1$ and $f_2$ on the vertices and edges of the graphs are conjugate; (2) two sinks corresponding to isomorphic vertices have equivalent schemes; and (3) for any two saddles corresponding to isomorphic vertices and having one-dimensional unstable manifolds, the corresponding pairs of curves in $S^2\times S^1$ associated with the one-dimensional separatrices are concordantly embedded.
@article{TRSPY_2002_236_a7,
     author = {Ch. Bonatti and V. Z. Grines and V. S. Medvedev and E. Peku},
     title = {On {Morse--Smale} {Diffeomorphisms} without {Heteroclinic} {Intersections} on {Three-Manifolds}},
     journal = {Informatics and Automation},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/}
}
TY  - JOUR
AU  - Ch. Bonatti
AU  - V. Z. Grines
AU  - V. S. Medvedev
AU  - E. Peku
TI  - On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds
JO  - Informatics and Automation
PY  - 2002
SP  - 66
EP  - 78
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/
LA  - ru
ID  - TRSPY_2002_236_a7
ER  - 
%0 Journal Article
%A Ch. Bonatti
%A V. Z. Grines
%A V. S. Medvedev
%A E. Peku
%T On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds
%J Informatics and Automation
%D 2002
%P 66-78
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/
%G ru
%F TRSPY_2002_236_a7
Ch. Bonatti; V. Z. Grines; V. S. Medvedev; E. Peku. On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 66-78. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a7/