On the 16th~Hilbert Problem
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 519-527

Voir la notice de l'article provenant de la source Math-Net.Ru

For a polynomial planar vector field of degree $n\geq 3$ with $S$ ($S\geq 2$) invariant nonsingular algebraic curves of degree greater than or equal to two, we proved that the maximal number of algebraic limit cycles is $n-1$. We use the Pontryagin method to analyze the problem of the maximal number of limit cycles for Lienard's equation.
@article{TRSPY_2002_236_a51,
     author = {N. Sadovskaia and R. Ramirez},
     title = {On the {16th~Hilbert} {Problem}},
     journal = {Informatics and Automation},
     pages = {519--527},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a51/}
}
TY  - JOUR
AU  - N. Sadovskaia
AU  - R. Ramirez
TI  - On the 16th~Hilbert Problem
JO  - Informatics and Automation
PY  - 2002
SP  - 519
EP  - 527
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a51/
LA  - en
ID  - TRSPY_2002_236_a51
ER  - 
%0 Journal Article
%A N. Sadovskaia
%A R. Ramirez
%T On the 16th~Hilbert Problem
%J Informatics and Automation
%D 2002
%P 519-527
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a51/
%G en
%F TRSPY_2002_236_a51
N. Sadovskaia; R. Ramirez. On the 16th~Hilbert Problem. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 519-527. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a51/