On the 16th~Hilbert Problem
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 519-527
Voir la notice de l'article provenant de la source Math-Net.Ru
For a polynomial planar vector field of degree $n\geq 3$ with $S$ ($S\geq
2$) invariant nonsingular algebraic curves of degree greater than or equal
to two, we proved that the maximal number of algebraic limit cycles
is $n-1$. We use the Pontryagin method to analyze the problem of the
maximal number of limit cycles for Lienard's equation.
@article{TRSPY_2002_236_a51,
author = {N. Sadovskaia and R. Ramirez},
title = {On the {16th~Hilbert} {Problem}},
journal = {Informatics and Automation},
pages = {519--527},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a51/}
}
N. Sadovskaia; R. Ramirez. On the 16th~Hilbert Problem. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 519-527. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a51/