Bifurcation of the Equilibrium Point in the Critical Case of Two Pairs of Zero Characteristic Roots
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 45-60
Voir la notice de l'article provenant de la source Math-Net.Ru
A real autonomous system of four differential equations with a small parameter is considered. It is proved that, under a finite number of explicit conditions on the coefficients of the lower order terms in the expansion of the right-hand sides, its two-dimensional invariant torus bifurcates at infinitesimal frequencies for sufficiently small values of the parameter. Such a system describes, in particular, the oscillations of two weakly coupled oscillators with restoring forces of orders $2n-1$ and $2n+1$.
@article{TRSPY_2002_236_a5,
author = {V. V. Basov},
title = {Bifurcation of the {Equilibrium} {Point} in the {Critical} {Case} of {Two} {Pairs} of {Zero} {Characteristic} {Roots}},
journal = {Informatics and Automation},
pages = {45--60},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a5/}
}
TY - JOUR AU - V. V. Basov TI - Bifurcation of the Equilibrium Point in the Critical Case of Two Pairs of Zero Characteristic Roots JO - Informatics and Automation PY - 2002 SP - 45 EP - 60 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a5/ LA - ru ID - TRSPY_2002_236_a5 ER -
V. V. Basov. Bifurcation of the Equilibrium Point in the Critical Case of Two Pairs of Zero Characteristic Roots. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 45-60. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a5/