Harnack Inequalities on Recurrent Metric Fractals
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 503-508

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of metric fractal and prove Harnack inequalities for metric fractals whose dimension is less than 2. The result applies, in particular, to finitely ramified fractals like the Sierpinski curves.
@article{TRSPY_2002_236_a49,
     author = {U. Mosco},
     title = {Harnack {Inequalities} on {Recurrent} {Metric} {Fractals}},
     journal = {Informatics and Automation},
     pages = {503--508},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a49/}
}
TY  - JOUR
AU  - U. Mosco
TI  - Harnack Inequalities on Recurrent Metric Fractals
JO  - Informatics and Automation
PY  - 2002
SP  - 503
EP  - 508
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a49/
LA  - en
ID  - TRSPY_2002_236_a49
ER  - 
%0 Journal Article
%A U. Mosco
%T Harnack Inequalities on Recurrent Metric Fractals
%J Informatics and Automation
%D 2002
%P 503-508
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a49/
%G en
%F TRSPY_2002_236_a49
U. Mosco. Harnack Inequalities on Recurrent Metric Fractals. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 503-508. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a49/