Multiple Equilibria in an Optimal Control Model for~Law~Enforcement
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 462-473

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Becker's (1968) economic approach to crime and punishment is extended by including intertemporal aspects. We analyze a one-state control model to determine the optimal dynamic trade-off between damages caused by offenders and law enforcement expenditures. By using Pontryagin's maximum principle we obtain interesting insight into the dynamical structure of optimal law enforcement policies. It is found that inherently multiple steady states are generated which can be saddle-points, unstable nodes or focuses and boundary solutions. Moreover, thresholds (so-called Skiba points) between the basins of attraction are discussed. A bifurcation analysis is carried out to classify the various patterns of optimal law enforcement policies.
@article{TRSPY_2002_236_a45,
     author = {G. Feichtinger and G. Tragler},
     title = {Multiple {Equilibria} in an {Optimal} {Control} {Model} {for~Law~Enforcement}},
     journal = {Informatics and Automation},
     pages = {462--473},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a45/}
}
TY  - JOUR
AU  - G. Feichtinger
AU  - G. Tragler
TI  - Multiple Equilibria in an Optimal Control Model for~Law~Enforcement
JO  - Informatics and Automation
PY  - 2002
SP  - 462
EP  - 473
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a45/
LA  - en
ID  - TRSPY_2002_236_a45
ER  - 
%0 Journal Article
%A G. Feichtinger
%A G. Tragler
%T Multiple Equilibria in an Optimal Control Model for~Law~Enforcement
%J Informatics and Automation
%D 2002
%P 462-473
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a45/
%G en
%F TRSPY_2002_236_a45
G. Feichtinger; G. Tragler. Multiple Equilibria in an Optimal Control Model for~Law~Enforcement. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 462-473. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a45/