On the Asymptotic Behavior of Solutions
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 447-461.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider solutions of an elliptic linear equation $Lu=0$ of second order in an unbounded domain $Q$ in $\mathbb R^n$ supposing that $Q\subset\{x=(x',x_n)\colon 0$, where $1\le \gamma(t)\le At+B$, and that $u$ satisfies the nonlinear boundary condition $\frac{\partial u}{\partial N}+k(x)u+b(x)|u(x)|^{p-1}u(x)=0$ on the part of the boundary of $Q$ where $x_n>0$. We show that any such solution $u$ growing moderately at infinity tends to $0$ as $|x|\to\infty$. Earlier we showed this theorem for the case $\gamma(x_n)=B$, i.e. for a cylindrical domain $Q=\Omega\times (0,\infty)$, $\Omega\subset\mathbb R^{n-1}$, and for the case when $A\le A_0$ with a constant $A_0$ sufficiently small. Here we admit any value of $A_0$. Our theorem is true even for the domain which is an outer part of a cone, and for the half-space $x_n>0$. Besides, we consider here more general operators $L$ with lower order terms. Notice that the new proof is quite different from those in our earlier works.
@article{TRSPY_2002_236_a44,
     author = {Yu. V. Egorov and V. A. Kondrat'ev},
     title = {On the {Asymptotic} {Behavior} of {Solutions}},
     journal = {Informatics and Automation},
     pages = {447--461},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a44/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
TI  - On the Asymptotic Behavior of Solutions
JO  - Informatics and Automation
PY  - 2002
SP  - 447
EP  - 461
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a44/
LA  - en
ID  - TRSPY_2002_236_a44
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%T On the Asymptotic Behavior of Solutions
%J Informatics and Automation
%D 2002
%P 447-461
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a44/
%G en
%F TRSPY_2002_236_a44
Yu. V. Egorov; V. A. Kondrat'ev. On the Asymptotic Behavior of Solutions. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 447-461. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a44/

[1] Stampacchia G., “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15 (1965), 189–257 | MR | Zbl

[2] Hu B., “Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition”, Diff. and Integr. Equat., 7:2 (1994), 301–313 | MR | Zbl

[3] Egorov Yu. V., Kondratev V. A., “Ob odnoi probleme O. A. Oleinik”, UMN, 52:6 (1997), 159–160 | MR | Zbl

[4] Egorov Yu. V., Kondratiev V. A., “On asymptotic behavior in an infinite cylinder of solutions to an elliptic equation of second order”, Appl. Anal., 71:1–4 (1999), 25–39 | DOI | MR | Zbl

[5] Egorov Yu. V., Kondratiev V. A., “On the asymptotic behavior of solutions to a semi-linear elliptic boundary problem in an unbounded domain”, C. R. Acad. Sci. Paris. Sér. 1, 330:9 (2000), 785–790 | MR | Zbl

[6] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer-Verl., Berlin etc., 1977 ; Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl | MR | Zbl

[7] Egorov Yu. V., Kondratiev V. A., On spectral theory of elliptic operators, Operator Theory. Adv. and Appl., 89, Birkhäuser, Basel etc., 1996 | MR | Zbl