Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_236_a44, author = {Yu. V. Egorov and V. A. Kondrat'ev}, title = {On the {Asymptotic} {Behavior} of {Solutions}}, journal = {Informatics and Automation}, pages = {447--461}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a44/} }
Yu. V. Egorov; V. A. Kondrat'ev. On the Asymptotic Behavior of Solutions. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 447-461. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a44/
[1] Stampacchia G., “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15 (1965), 189–257 | MR | Zbl
[2] Hu B., “Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition”, Diff. and Integr. Equat., 7:2 (1994), 301–313 | MR | Zbl
[3] Egorov Yu. V., Kondratev V. A., “Ob odnoi probleme O. A. Oleinik”, UMN, 52:6 (1997), 159–160 | MR | Zbl
[4] Egorov Yu. V., Kondratiev V. A., “On asymptotic behavior in an infinite cylinder of solutions to an elliptic equation of second order”, Appl. Anal., 71:1–4 (1999), 25–39 | DOI | MR | Zbl
[5] Egorov Yu. V., Kondratiev V. A., “On the asymptotic behavior of solutions to a semi-linear elliptic boundary problem in an unbounded domain”, C. R. Acad. Sci. Paris. Sér. 1, 330:9 (2000), 785–790 | MR | Zbl
[6] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer-Verl., Berlin etc., 1977 ; Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl | MR | Zbl
[7] Egorov Yu. V., Kondratiev V. A., On spectral theory of elliptic operators, Operator Theory. Adv. and Appl., 89, Birkhäuser, Basel etc., 1996 | MR | Zbl