Invariant Manifolds Revisited
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 428-446

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of the paper is a survey of results obtained since 1993 and extending the scope of invariant manifold theory; most of them appear here under a better form than in the original papers. In the second part, we state and prove a new invariant theorem, whose proof involves a differential calculus on sequence spaces that are not Banach manifolds.
@article{TRSPY_2002_236_a43,
     author = {M. Chaperon},
     title = {Invariant {Manifolds} {Revisited}},
     journal = {Informatics and Automation},
     pages = {428--446},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a43/}
}
TY  - JOUR
AU  - M. Chaperon
TI  - Invariant Manifolds Revisited
JO  - Informatics and Automation
PY  - 2002
SP  - 428
EP  - 446
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a43/
LA  - en
ID  - TRSPY_2002_236_a43
ER  - 
%0 Journal Article
%A M. Chaperon
%T Invariant Manifolds Revisited
%J Informatics and Automation
%D 2002
%P 428-446
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a43/
%G en
%F TRSPY_2002_236_a43
M. Chaperon. Invariant Manifolds Revisited. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 428-446. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a43/