The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 408-427

Voir la notice de l'article provenant de la source Math-Net.Ru

We treat the problem of the description of the limits of discrete variational problems with long-range interactions in a one-dimensional setting. Under some polynomial-growth condition on the energy densities, we show that it is possible to define a local limit problem on a Sobolev space described by a homogenization formula. We give examples to show that, if the growth conditions are not uniformly satisfied, then the limit problem may be of a nonlocal form or with multiple densities.
@article{TRSPY_2002_236_a42,
     author = {A. Braides and M. Gelli and M. Sigalotti},
     title = {The {Passage} from {Nonconvex} {Discrete} {Systems} to {Variational} {Problems} in {Sobolev} {Spaces:} {The} {One-Dimensional} {Case}},
     journal = {Informatics and Automation},
     pages = {408--427},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a42/}
}
TY  - JOUR
AU  - A. Braides
AU  - M. Gelli
AU  - M. Sigalotti
TI  - The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case
JO  - Informatics and Automation
PY  - 2002
SP  - 408
EP  - 427
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a42/
LA  - en
ID  - TRSPY_2002_236_a42
ER  - 
%0 Journal Article
%A A. Braides
%A M. Gelli
%A M. Sigalotti
%T The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case
%J Informatics and Automation
%D 2002
%P 408-427
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a42/
%G en
%F TRSPY_2002_236_a42
A. Braides; M. Gelli; M. Sigalotti. The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 408-427. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a42/