Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimizing a smooth functional on a given convex closed cone under finitely many equality- and inequality-type constraints is considered. For this problem, an extremum principle, i.e. first- and second-order necessary conditions, is obtained that makes sense even at abnormal points. The extremum principle is generalized to the case of minimizing sequences. Sufficient conditions for an extremum are obtained, and their relation to the necessary conditions is examined. The extremum principle is applied to derive an inverse function theorem, which remains valid at abnormal points.
@article{TRSPY_2002_236_a4,
     author = {A. V. Arutyunov},
     title = {Necessary {Extremum} {Conditions} and an {Inverse} {Function} {Theorem} without a~priori {Normality} {Assumptions}},
     journal = {Informatics and Automation},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a4/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions
JO  - Informatics and Automation
PY  - 2002
SP  - 33
EP  - 44
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a4/
LA  - ru
ID  - TRSPY_2002_236_a4
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions
%J Informatics and Automation
%D 2002
%P 33-44
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a4/
%G ru
%F TRSPY_2002_236_a4
A. V. Arutyunov. Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 33-44. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a4/

[1] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[2] Arutyunov A. V., Bobylev N. A., Korovin S. K., “One remark to Ekeland`s variational principle”, Comput. Math. Appl., 34:2,4 (1997), 267–271 | DOI | MR | Zbl

[3] Ioffe A. D., Tikhomirov V. M., “Neskolko zamechanii o variatsionnykh printsipakh”, Mat. zametki, 61:2 (1997), 305–311. | MR | Zbl

[4] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Mat. sb., 191:1 (2000), 3–26 | MR | Zbl

[5] Bonnas J. F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optim., 9:2 (1999), 466–492 | DOI | MR

[6] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Program. Study, 19 (1982), 39–76 | MR