Nonstandard Variational Problems in Mathematical Statistics
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 378-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

Forty years of very intensive search for robust estimators that ought to be stable to small variations of the model probability density function have achieved modest success. An optimal stable estimator has not been found even for the normal distribution center: the estimators depend on unestimated parameters. The reason lies in traditional methods of mathematical statistics that were used for the solution of a nonstandard problem. The application of the methods of the calculus of variations and functional differentiation reduces the problem to a nonstandard problem in the calculus of variations and, after its solution, makes the problem simple and allows one to obtain a compact optimal solution for an arbitrary parameter of any distribution.
@article{TRSPY_2002_236_a39,
     author = {A. M. Shurygin},
     title = {Nonstandard {Variational} {Problems} in {Mathematical} {Statistics}},
     journal = {Informatics and Automation},
     pages = {378--385},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a39/}
}
TY  - JOUR
AU  - A. M. Shurygin
TI  - Nonstandard Variational Problems in Mathematical Statistics
JO  - Informatics and Automation
PY  - 2002
SP  - 378
EP  - 385
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a39/
LA  - ru
ID  - TRSPY_2002_236_a39
ER  - 
%0 Journal Article
%A A. M. Shurygin
%T Nonstandard Variational Problems in Mathematical Statistics
%J Informatics and Automation
%D 2002
%P 378-385
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a39/
%G ru
%F TRSPY_2002_236_a39
A. M. Shurygin. Nonstandard Variational Problems in Mathematical Statistics. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 378-385. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a39/

[1] Andrews D. F., Bickel P. J., Hampel F. R., Huber P. J., Rodger W. H., Tukey J. W., A robust estimation for location: Survey and advances, Princeton Univ. Press, Princeton, NJ, 1972 | Zbl

[2] Hampel F. R., Ronchetti E. M., Rausseeuw P. J., Stahel W. A., Robust statistics and approach based on influence functions, J. Wiley and Sons, New York, 1986 | MR | Zbl

[3] Huber P. J., “Robust estimation of location parameter”, Ann. Math. Statist., 35 (1964), 73–101 | DOI | MR | Zbl

[4] Godambe V. P., “An optimal property of regular maximum likelihood estimation”, Ann. Math. Statist., 31 (1960), 1208–1211 | DOI | MR

[5] Meshalkin L. D., “Some mathematical methods for the study of non-communicable diseases”, Proc. 6th Intern. Meet. of Uses of Epidemiology in Planning Health Services, v. 1, Primosten, Yugoslavia, 1971, 250–256

[6] Pfanzagle J., “On measurability and consistency of minimum contrast estimates”, Metrica, 14 (1969), 248–278

[7] Shurygin A. M., “New approach to optimization of stable estimation”, Proc. 1st US/Japan Conf. on Frontiers of Statistical Modeling, v. 3, Kluwer Acad. Publ., Dordrecht, 1994, 315–340 | MR

[8] Shurygin A. M., Prikladnaya stokhastika: ustoichivost, robastnost, prochnost, Finansy i statistika, M., 2000 | MR | Zbl

[9] Tukey J. W., A survey of sampling from contaminated distribution Contribution to probability and statistics, ed. I. Olkin, Stanford Univ. Press, Stanford, 1960 | MR