Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of two-scale convergence developed in the works of G. Nguetseng, G. Allaire, and V.V. Zhikov is applied to the homogenization of variational problems formulated in terms of measures. A variational problem that describes a nonlinear medium with double porosity is also analyzed.
@article{TRSPY_2002_236_a38,
     author = {S. B. Shulga},
     title = {Homogenization of {Nonlinear} {Variational} {Problems} by {Means} of {Two-Scale} {Convergence}},
     journal = {Informatics and Automation},
     pages = {371--377},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a38/}
}
TY  - JOUR
AU  - S. B. Shulga
TI  - Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence
JO  - Informatics and Automation
PY  - 2002
SP  - 371
EP  - 377
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a38/
LA  - ru
ID  - TRSPY_2002_236_a38
ER  - 
%0 Journal Article
%A S. B. Shulga
%T Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence
%J Informatics and Automation
%D 2002
%P 371-377
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a38/
%G ru
%F TRSPY_2002_236_a38
S. B. Shulga. Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a38/