On Weighted Korn's Inequality for a~Thin Nonsymmetric Plate
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 347-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

A weighted Korn's inequality is proved for a thin plate with a rough surface. The dependence of the coefficients in this inequality on a small parameter characterizing the thickness of the plate and the size of the microinhomogeneity of the surface is traced.
@article{TRSPY_2002_236_a36,
     author = {G. A. Chechkin and E. A. Pichugina (Akimova)},
     title = {On {Weighted} {Korn's} {Inequality} for {a~Thin} {Nonsymmetric} {Plate}},
     journal = {Informatics and Automation},
     pages = {347--353},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a36/}
}
TY  - JOUR
AU  - G. A. Chechkin
AU  - E. A. Pichugina (Akimova)
TI  - On Weighted Korn's Inequality for a~Thin Nonsymmetric Plate
JO  - Informatics and Automation
PY  - 2002
SP  - 347
EP  - 353
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a36/
LA  - ru
ID  - TRSPY_2002_236_a36
ER  - 
%0 Journal Article
%A G. A. Chechkin
%A E. A. Pichugina (Akimova)
%T On Weighted Korn's Inequality for a~Thin Nonsymmetric Plate
%J Informatics and Automation
%D 2002
%P 347-353
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a36/
%G ru
%F TRSPY_2002_236_a36
G. A. Chechkin; E. A. Pichugina (Akimova). On Weighted Korn's Inequality for a~Thin Nonsymmetric Plate. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 347-353. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a36/

[1] Chechkin G. A., Pichugina E. A., “Weighted Korn's inequality for a thin plate with a rough surface”, Russ. J. Math. Phys., 7:3 (2000), 279–287 | MR | Zbl

[2] Fridrichs K. O., “On the boundary value problems of the theory of elasticity and Korn's inequality”, Ann. Math., 48 (1947), 447–471

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, UMN, 43:5 (1988), 55–98 | MR

[5] Kondratev V. A., Oleinik O. A., “O zavisimosti konstant v neravenstve Korna ot parametrov, kharakterizuyuschikh geometriyu oblasti”, UMN, 44:6 (1989), 157–158 | MR

[6] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestn. SPbGU. Ser. 1, 2:8 (1992), 19–24 | MR

[7] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Probl. mat. analiza, 17 (1997), 101–152 | Zbl

[8] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Meth. Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990