Finite-Dimensional Subalgebras of the Lie Algebra of Vector Fields on the Circle
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 338-342
Voir la notice de l'article provenant de la source Math-Net.Ru
Finite-dimensional subalgebras of the Lie algebra $\mathrm {Vect}(S^1)$ of smooth tangent vector fields on the circle are considered that consist of analytic vector fields. It is proved that (up to an isomorphism) there are only three such subalgebras: a one-dimensional subalgebra, a two-dimensional noncommutative subalgebra, and a three-dimensional subalgebra isomorphic to $\mathrm {sl}_2(\mathbb R)$.
@article{TRSPY_2002_236_a34,
author = {M. S. Strigunova},
title = {Finite-Dimensional {Subalgebras} of the {Lie} {Algebra} of {Vector} {Fields} on the {Circle}},
journal = {Informatics and Automation},
pages = {338--342},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a34/}
}
M. S. Strigunova. Finite-Dimensional Subalgebras of the Lie Algebra of Vector Fields on the Circle. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 338-342. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a34/